• 締切済み

学校で出された物理の問題が解けなくて困っています

1.電荷Zeの原子核による電子(質量m)の散乱について電子の動径エネルギー{(1/2)mr'^2}を調べてみよう。(r'はrの微分ととって下さい。) 衝突パラメータをbとし、原子核から電子が十分離れた位置での速度v[0]を(Ze^2)/(4πε[0] )=mbv[0]^2になるように決める。 この時クーロンポテンシャルはU(r)=-(mbv[0]^2)/r となる。 力学的エネルギーは E=(1/2)mv[0]^2=(1/2)mr'^2+L^2/(2mr^2)+U(r)で与えられ、角運動量はL=mbv[0]である。 (1)電子が近づくことが出来る最小値r[0]をbを使って与えよ。 (2)電子の動径の運動エネルギー(1/2)mr'^2が最大となる位置r[1]を求めよ。 (3)位置r[1]におけるU(r[1])および(1/2)mr'[1]^2を与えよ。 (4)lU(r)lがrの減少とともにr^(-2)より急速に増大するような引力の場合には力の中心にまで落下していくこともありうる。   ことを簡単な図を使って分かりやすく説明せよ。 (4)は図があるので回答できなければ大丈夫です。 おねがいします。

みんなの回答

回答No.1

超有名問題です ラザフォード散乱で調べてみてください

関連するQ&A

  • 動径波動方程式の近似解について教えてください

    水素型原子の動径波動方程式 -ħ^2/2μ (d^2 u)/(dr^2 )+{-(Ze^2)/(4πε r)+ (L(L+1) ħ^2)/(2μr^2 )-E}u=0        ------        uの二階微分 u=rR Rは動径波動関数 μは換算質量 Lは方位量子数(分かりやすいように大文字にしました) (L(L+1) ħ^2)/(2μr^2 )は遠心力ポテンシャルの項 -(Ze^2)/(4πε r)はクーロンポテンシャルの項 上記の方程式において原子核近傍(r→0)での近似解u(またはR)を求めよという問題がありました。 Lが0でないときは、1/r^2の項以外は小さいので無視でき、 解をu=r^sと仮定して解いていくことができるので、その結果 s=L+1 or -L を得て、 物理的に許される解がu=r^(L+1) となることは分かりました。 しかし、Lが0のときについては、遠心力ポテンシャルの項(1/r^2の項)が消えてしまい、クーロンポテンシャルの項が無視できないと思います。 参考書を探してもこの時の解法が見つからなかったので、 解法が分かる方がいらっしゃったら教えていただきたいです。 よろしくお願いします。

  • 原子核の質量公式について

    こんにちは、ガモフ先生の「物理学の探検」を読んで原子核物理に興味を持ちました。特に少し不完全(?)な液滴モデルが面白いと思っています。そこで液滴モデルをもっと知るため、原子核(野上茂吉郎先生著)を読んでいるのですが、原子核の質量公式(ワイツゼッカー、ベーテの質量公式)で、 「第4項はクーロンエネルギーである。原子核を半径Rの一様な電荷密度をもつ球と考えてみると、その静電エネルギー(またはクーロンエネルギー)は 3(Ze)^2/5Rとなる。」 と記載されているのですが、なぜ静電エネルギーは 3(Ze)^2/5Rとなるのでしょうか? ちなみに、核の体積は、4π/3 R^3=4π/3 r0^3Aということです。 基本的な質問で申し訳ございませんが、ご教示頂きましたら幸いです。

  • 電磁気学

    こんにちは 以下の問題がわからなくて困っています わかる方教えていただけないでしょうか? 原子核を半径Rの球として、陽子の電荷eは核内に一様に分布しているものとする。 原子番号Zの核の中心からr(r<R)なる点の静電ポテンシャルは Ze/εV × (R2/2 - r2/6) で与えられることを示し、また原子核のCoulombエネルギーは We = 1/4πε × 3/5 × (Ze)2/R で与えられることを示せ。 ただし、Vは原子核の体積である。 よろしくお願いします。

  • エネルギー固有値について…

    レポート問題で 「水素原子の電子(質量μ)は、核が重いから静止しているとすれば、 位置r(ベクトル)にいるときのクーロンポテンシャル  V(r)=-e^2/4πεr  を感じる。シュレディンガー方程式を書き  u(r)=Nexp(-αr) (rとNは定数)  の形の解があることを示し、対応するエネルギー固有値を求めよ。」 という問題が出たのですが。問題の通り、普通の解き方でなく、三次元的な解き方を求められているのですが、よくわかりません。 どのような方針でとけばいいか、なるべく詳しく教えていただきたいです。かなり大雑把な質問で申し訳ありません。 どうかよろしくお願いします。

  • ラザフォードの原子模型の矛盾の導出過程

    1:電子は絶えず円運動をすることから、電子の方向は常に変化 2:電子の方向の変化は、電子が加速度運動をしていることと同じ 3:電磁気学によれば、電子が加速度をもち運動するならば、電子は電磁波を放射する。 4:電子が電磁波を放射するため、電子のエネルギーは連続的に減少 5:電子のエネルギー減少により、電子の軌道半径も減少 6:電子は螺旋状に原子に接近し、やがて合体する これはラザフォードの原子模型と矛盾する。 と習いました。 しかし過程5の電子のエネルギー減少により、電子の軌道半径が減少する理由がわかりません。 私は電子の運動エネルギーについて考えました。 電子が軌道上から飛び出したり、原子核に吸い込まれたりしないために遠心力と静電力がつりあうことから導かれる式 mv^2/r=e^2/4πεr^2 を考え、 (電子の運動エネルギー)=mv^2/2=e^2/8πεr と導き、 電子のエネルギーの減少に伴い、軌道半径は大きくなると考えてしまいました。 間違ってるのはわかっていますが、そもそも 「電子が軌道上から飛び出したり、原子核に吸い込まれたりしないため」の条件を導入した時点で矛盾でしょうか? 理由を教えてください。お願いします。

  • 軌道角運動量0のラザフォード散乱

    クーロン型ポテンシャルでの粒子の散乱を考える時、ポテンシャルが斥力型なら散乱されることは分かりやすいですが、ポテンシャルが引力型でも微分断面積(ラザフォードの公式)は全く同じです。引力が働いているのになぜ中心に落ち込まずに散乱されてしまうのかについて私は動径方向には遠心力ポテンシャルL^2/(2mr^2)があり、r →0 ではクーロンポテンシャルより優勢になるからという説明を考えました。しかしこの説明も何だか怪しいように思います。軌道角運動量が0でない場合は良いとして軌道角運動量が0の場合はどうなるのでしょう。S波についても少なくとも低エネルギーでは  e + p → n + ν + ν-  (ν-は反ニュートリノ) のような反応が起こるのではなく、ラザフォードの公式に従って散乱されると思います。S波はなぜ原子核に吸収されないと考えたら良いのでしょうか。

  • 高等学校物理はどう再編すべきだと思いますか。

    高等学校物理はどう再編すべきだと思いますか。私案を次に示します。 (1)運動 ア 力と運動:力のつり合い,運動の表し方,運動の法則 イ いろいろな運動:落体の運動,円運動,単振動,万有引力 ウ 運動量:運動量,力積,運動量の保存 (2)エネルギー ア 力学的エネルギー:仕事,位置エネルギーと運動エネルギー,力学的エネルギーの保存 イ 熱エネルギー:熱と温度,熱と仕事,エネルギーの変換と保存 ウ 気体分子の運動:ボイル・シャルルの法則,分子運動と圧力,内部エネルギー (3)波動 ア 波の性質:縦波と横波,波の伝わり方,波の干渉・回折 イ 音波:音の伝わり方,共鳴,共振 ウ 光波:光の進み方,光の干渉・回折,スペクトル (4)電気と磁気 ア 電界と電流:電界,電位,電気容量,電気抵抗,電流と仕事 イ 電流と磁界:電流による磁界,磁界が電流に及ぼす力 ウ 電磁誘導と交流:誘導起電力、交流、共振回路、電磁波 (5)電子と原子 ア 電子と光:電子の電荷と質量、電子の波動性、光の粒子性 イ 原子と原子核:原子の構造、原子核の構成、放射能、核エネルギー 標準単位数は,物理は理科の基本であることから5単位とします。

  • 動径波動関数についての質問です。

    軌道角運動量量子数lが0のときに、 動径波動関数が、原子核の位置(r=0)で有限の値を持つ理由がわかりません。 詳しく分かる方がいらしたら教えていただけると助かります。

  • 物理の問題.92

    一般に、電気素量eのa倍の電荷をもつ粒子がVの電位差で加速されるとき、( a )eVの運動エネルギーを得る。 また、電荷Q,質量m,運動エネルギーEをもつ粒子は、その8ん同方向に垂直で一様な磁界(磁束密度B)のなかでは、半径( b )の円周上を、角速度( c )で回転する。 (1)図のように、紙面に垂直で一様な磁界のなかで、金網でつくられた2つの電極P_1,P_2が十分接近して平行に置かれている。電極P_2を設置し、電極P_1に最大電圧V、周波数fの交流電圧をかけ、極板間に電界をつくる。ただし、電極アkん以外には電界が生じないように工夫されている。図のSはイオン源であって、ここで用紙をつくる。そのために、水素の気体を電離するのであるが、その際、陽子以外に水素分子の1価の陽イオンも同時につくられる。 イオン源の外部は真空であって、イオン源を出た陽子は電界で加速され、電極を通り抜けて極板間の外側にでる。そして、陽子は円軌道を描いて再び電極間に入ってくる。陽子の角速度ω、交流電圧の周波数f,および正の整数nとの間にf=( d )の関係があれば、陽子は加速し続けられる。このとき、陽子は1回転ごとに、最大( e )eVの運動エネルギーを得て、その軌道半径は( f )なる。 なお、1価の水素イオンを加速し続けるためには、交流電圧の周波数を陽子の場合の1/2倍にしなければならない。ただし、電子の質量は陽子の質量に比べて無視できるほど小さい。 軌道半径0.2(m)のところで、1.0・10^6(eV)の運動エネルギーをもつ陽子は、加速されて半径( g )のところで、4.0×10^6(eV)に達する。この加速された陽子を外に引きだして、装置から十分離れたところにある原子番号Z=100の原子核に正面衝突させる。 この原子核を点電荷とみなすとき、陽子はその原子核との間に働くクーロン力に抗して、( h )まで接近し、その後、反対方向にはね消される。 ただし、点電荷のまわりの電位は、その電荷量に比例し、そこからの距離に反比例する。そして、電荷量が電気素量の場合、電位は電荷から1(m)離れた点で1.4・10^(-9) (V)である。また、この原子核の質量は陽子の質量に比べて十分大きいので、衝突の過程で原子核は動かないものとする。 この問題で答えは順番に a)aV b)r_0=√2mE/B|Q| c)ω_0=B|Q|/m d)円運動の半周期が交流電圧半周期の奇数倍であれば、陽子は加速し続けられる。 よってf=ω(2n-1)/2π e)1回転で2回加速されるので、2V(eV) f)大きく g)円運動の半径は粒子の運動エネルギーの平方根に比例する。r_1=0.4(m) h)クーロン力の比例定数をkとすると、題意よりke/1=1.4×10^(-9) ∴ke=1.4×10^(-9) 求める距離をxとし、加速された陽子のエネルギーをE_1(=4.0×10^6 eV) とすると、力学的エネルギー保存則より eE_1+0=0+kZe^2/x ここから答えを求めていっていますが、疑問なのが、まずdについてですが、なぜそのような答えになるのでしょうか。 なぜ、円運動の半周期が交流電圧の半周期の奇数倍ならよいのですか? 偶数倍とか整数倍ではだめなのでしょうか。 また問題では、電極から陽子が飛び出すとありますが、飛び出した後になぜ円軌道を描くのですか? また円軌道を描いた後戻ってくるとありますが、どのようにして戻ってくるのでしょうか。 またhについて、ke=1.4×10^(-9)とありますが、問題にはクーロン定数をかけたものとは書いてありませんよね。 点電荷のまわりの電位は、電荷量に比例し、距離に反比例する。そしてその電荷量が電子素量の場合1.4×10^(-9)となる。 これだとe/1=1.4×10^(-9)と読み取ってしまいそうなのですが、なぜkをここで用いたのでしょうか。 またエネルギー保存則からeE_1=kZe^2/xが成り立っていますが、eE_1のE_1は運動エネルギーですよね? 運動エネルギーに電荷をかけたら何のエネルギーになるのでしょうか。 またkZe^2/xは何のエネルギーなのでしょうか…。これらの式が成り立つ理由がよくわかりません。 詳しく教えていただけると助かります。 よろしくお願い致します。

  • 電荷+Zeの扱い方

    電荷+Ze(Z:原子番号)の原子核の周りを1つの電子が回っている 半径rnを求めよ 円運動の式mv^2/r=ke^2/r^2に代入するのですが、答えの右辺がk*Ze*e/rn^2と、(Ze)^2となってないのは何故なのでしょうか?