• ベストアンサー

tの消去方法

tが実数全体を動くとき L:x+t(y-3)=0 M:tx-(y+3)=0 の交点はどんな図形を描くか、という問題について。 法線ベクトルを利用する解法はわかりました。 しかし、オーソドックスにtを消去する方法に挑戦したところ x=6t/(t^2+1) y=3(t^2-1)/(t^2+1) までたどりつきましたが、面倒な方法しか思いつきません。 (第1式から解の公式でt=として第2式に代入、など) ここからtを消去するとき、どんな手順が簡単でしょうか?

質問者が選んだベストアンサー

  • ベストアンサー
  • gohtraw
  • ベストアンサー率54% (1630/2966)
回答No.1

Lよりt=x/(3-y) Mよりt=(y+3)/x 両者は等しいので x^2=(3-y)(y+3)    =9-y^2 ではダメ?

partita
質問者

お礼

あらら・・・ 盲点でした。 簡単でしたね^^; ありがとうございました。

その他の回答 (1)

  • hrsmmhr
  • ベストアンサー率36% (173/477)
回答No.2

Lから t=-x/(y-3) Mから t=(y+3)/x なので -x^2=(y-3)(y+3)

partita
質問者

お礼

どうもありがとうございました。

関連するQ&A

  • 図形と式、大学入試問題です。

    xy平面において直線 l: X+t (y-3)=0, m: tX-(y+3) =0 を考える(ただし、tは実数)  (1) lはtの値にかかわりなくある定点を通ることを示せ  (2) lが実数全体を動くとき、lとmとの交点はどんな図形を描くか。  解法ご教授ください。よろしくお願いします。

  • 2直線の交点の軌跡

    2直線の交点の軌跡 mが実数全体を動くとき、次の2直線の交点Pはどんな図形を描くか。 mx-y=0・・・(1)、x+my-m-2=0・・・(2) 指針、(1)、(2)を連立して解くと x=m+2/m^2+1,y=m(m+2)/m^2+1 この2式からmを消去してx、yの関係式を求めようとするのは計算が大変。 そこで、交点Pの座標を(x,y)とすると(x,y)は(1)、(2)を同時に満たすから、(1)、(2)はmをつなぎ文字とみた軌跡の条件式である よって、(1)、(2)から直接mを消去する。なお、(1)、(2)が表さない、直線があるから、求めた図形から、除外する点がでてくることに 注意する。 教えてほしいところ 解答では、(1)の式を変形して(2)に代入していたんですが、(1)を満たすような(x,y)と(2)を満たすような(x,y)は異なりますよね(必要十分でない)?? ですから、代入して(1)のx,yと(2)のx,yをごちゃごちゃにするのは駄目なのでは??

  • tについての方程式

    「tについての方程式 y=x^2+txがt≧1を持つような(x,y)の全体を求めよ。」 という問題ですが、x=0のときの場合分けの時、0・t=yとなり、 y=0の時0・t=0となり、tはすべての実数解を持つので、t≧1なる解を持つのでこの時(x,y)=(0,0) とわかりますが、その逆は言えないと思います。 なぜかというと、もし(x,y)=(0,0)ならばtは1以下のも持つことになるので、同値にはならないと思うのですが・・・。 どう考えればいいのかわかりません。

  • 数II図形と方程式の単元の問題解説

    X^2 + 2y^2 = 1 の範囲を満すとき、x+y^2の最大値、最小値を求める問題において、x+y^2= tとおいて、x^2+2y^2=1に代入してxの二次方程式にする。そこで、判別式から実数解を求めるための条件からtの範囲を求めると最大値は出ます。図形的に見れば楕円と放物線の交点になるので、判別式で最大値、最小値が求められると思うのですが、なぜ判別式からは最小値が出ないのか、解説をお願いします。

  • 2直線の交点の軌跡は、判別式を用いて求められますか

    mが実数全体を動くとき、次の2直線の交点Pはどんな図形を動くか。 (1) mx - y = 0    (2) x + my - m - 2 = 0 という問題について、解説ではmを消去する方針で、(1)からm = y / x を導き、(2)に代入しています。 ですが、たとえばyを消去する方針で、(1)からy = mxを導いて(2)に代入して x + m^2x - m - 2 = 0 とし、これをmについてまとめて、xm^2 - m + x -2 = 0とした場合、 この式は(1)と(2)を同時に満たす式となり、判別式D = 0となるとき1つの交点をもつ、というように解くことはできないのでしょうか? ちなみに、これを解くとD=0より4x^2 - 8x - 1 = 0となり、解答(x-1)^2 + (y-1/2)^2 = 5/4とは全く異なってしまうので、間違った解き方だということはわかるのですが、なぜこの解き方では解答に辿りつけないのかがわかりません。 判別式をここで持ち出すこと自体、おかしいのでしょうか? 変な質問ですが、よろしくお願いします。

  • 直線l:x+t(y-3)=0でtは実数です。

    直線l:x+t(y-3)=0でtは実数です。 画像の2、3行目に書いてあることが理解できません。。。 なぜy=3以外のものすべてを表すのでしょうか? また(2)はtが実数全体を動くとき、lとmの交点はどのような図形を描くかという問題なのですが、 なぜlとmが直交することを書いているのでしょうか? よろしくお願いします。

  • 軌跡についての質問です

    軌跡についての質問です (x-1)+t(y-3)=0 tx-(y+3)=0 xy平面上で tが正の実数全体を動くとき この2つのグラフの交点の描く図形はどうなるかという問題です。 tは正なので tを消去する際に t=(x-1)/(3-y) として x>1かつ3>y または x<1かつ 3<y と そして軌跡の方程式をもとめて範囲を定めると回答ではしています しかし t=(y+3)/x ともできますよね? だったら、x>0 かつ y>-3 または x<0 かつy<-3 のときも検討しないといけないのではないかと思うのです。 私の考えは間違っていますか?回答よろしくお願いします。 こういった問題においては概して t>0を t=(x-1)/(3-y) または t=(y+3)/x のどちらか片方について考えればいいのでしょうか? また、そうであるならばこの問題に限らず、概していえることですか?

  • tを消したい!!

    x=Asin(ωt+α) y=Bsin(ωt+β) この二つの式から、tを消去すると (x^2/A^2)+(y^2/B^2)-(2xy/AB)cosε=sin^2ε 但し ε=α-β となるみたいなのですが、何度計算してみてもうまく上の式のようにまとまってくれません。はじめに (x^2/A^2)+(y^2/B^2)にxとyを代入して、三角関数を加法定理で展開して…とかやってるんですが、この方法自体が間違ってる、もしくは面倒なやり方なのでしょうか?

  • パラメータ消去について

    tがすべての実数値をとって変化するとき、P(2t-1,(4^2)-1)の軌跡を求めよ というものについて、Pの座標を(X,Y)とおくと X=2t-1 Y=(4^2)-1 と置けますよね、 そこでXを式変形してt=に直し、Yの式に代入しパラメータ消去する というのはよくやることで、何も考えずにやっていましたが。パラメータtが消去されちゃうってことはどういうことなんでしょうか・・・? tによってx,yが定まるのにtを消しちゃっていいのか? tがなくなったということはtによらない関数だということか? けどパラメータというのは、tの値によって、x,yが変動するものだから、tは必要だ。あくまでもその軌跡がもとめられただけだ・・・ などと考えてましたが・・・。 ☆つまり何がいいたいかというと、X= ~t ,Y= ~t とパラメータ表示されているものの軌跡の取りかたは、本質的な意味では、t=1,2,3・・・ などと点を細かくとっていき、それでできる方程式が軌跡である。ということだと思うのですが、t=~Xの式に直し、パラメータを消去しちゃったら、tにすべての値を代入した時のグラフ(軌跡)がいっきに求まってしまうとは・・・ なぜなんだろう・・・?と疑問に思いました。 ☆あと別の問題ですが、軌跡を求める問題で、軌跡の方程式が、(X^2)+(Y^2)+4X=0とまで変形できたときに円だ、とピンとくるべきですよね。x^2 y^2 が含まれていたら円だ!と思っていいでしょうか? 楕円とか、双曲線ってのも問題によってはあるんでしょうか・・・? ちなみに高3です・・・ よろしくお願いします

  • 点(a,b)における傾きkの時の法線の式の求め方?

    以下の問題で、※の箇所が分かりません。どういう公式を使うとこのような変形が出来るのでしょうか?教えてください 問:xy平面上の放物線C:y=x^2について、 C上の点P(t,t^2)における法線の方程式を求めよ。 解:(t,t^2)における傾きは2tであり(微分)、法線はこれと直交するから、 法線の式は、1(x-t)+2t(y-t^2)=0…※ ⇔x+2ty-2t^3-t=0 法線の傾き(-1/2t)を出してy=(-1/2t)x+bに(t,t^2)を代入してもよいのですが、この場合(0,0)についても成り立つ式が欲しいので、この回答だそうです。 よろしくお願いします