無限の存在と定義について

このQ&Aのポイント
  • 無限の存在とは数学的に定義可能であっても必ずしも存在するとは限らないことがある。
  • 無限の概念は数学でよく使用されるが、具体的な存在が保証されているわけではない。
  • 数学的に定義可能なものはすべて存在すると考えるわけではなく、存在という概念は厳密な定義が求められる。
回答を見る
  • ベストアンサー

無限は存在しますかそれとも定義できるだけですか?

数学のカテゴリーが良いのか国語のカテゴリーが良いのか迷ったのですが数学の方からご意見を伺いたいと思います。 「無限」に対して「存在する」という術語を使用できますか? 例えばユークリッド幾何学で「平行な二本の直線の交点は無限遠にある」という命題は「平行な二本の直線に交点は無い」という命題に置き換えられるのですよね。 二つの命題が同値であることから、「無限遠」は「無い」ということが導き出されると思います。 また、自然数全体の集合を概念的に定義することができますが、それが存在するかと言うと、存在しないと言うほうが現実的な気がします。 つまり、数学的に定義可能なものであっても必ずしも存在するとは限らないと言ってよいのでしょうか? それとも、数学的に定義可能であるものはすべて存在すると考えるのが普通なのでしょうか? もうひとつ別の表現をすると、部分集合の補集合が空集合だっときには、この空集合は「存在する」と表現しても良いのでしょうか? それとも空集合の定義には、それが存在しないということを含んでいるのでしょうか? 存在という言葉の定義の話しなのかもしれませんが、是非、数学の方にご教示いただけると幸いです。

質問者が選んだベストアンサー

  • ベストアンサー
  • alice_44
  • ベストアンサー率44% (2109/4759)
回答No.1

存在という言葉の定義の問題ですね。 数学における存在の意味については、 質問氏も書いておられるように、 矛盾なく定義できるものは 存在すると考えても構わない… というのが標準的な考える方だと思います。 敢えて存在を仮定しないことも可能なので、 定義できれば存在する…ではなく、 定義できれば存在を仮定してもよい… ということになります。 後半部分の空集合については、 存在しないのは空集合の元であって、 元が存在しない集合であるところの 空集合は存在します。 中身は無いが容れ物はある…という訳です。

Mokuzo100nenn
質問者

お礼

回答ありがとうございます。 数学ってのはすべからず仮定のうえで議論しているのでしたね。 「定義できれば存在を仮定してもよい…」 これを銘記しておきます。 「中身は無いが容れ物はある…」 これも分かりやすかったです。 完璧ですね! またカントールの数学読み物を読む元気がでてきました。 どうもありがとうござました。

その他の回答 (1)

  • k_kota
  • ベストアンサー率19% (434/2186)
回答No.2

数学と言うのは概念の世界の学問です。 要するに、定義して適切に使えるなら何が存在してもOKと言うことです。 そうなると概念としても無限は存在するし、利用もされていますので、存在すると言っていいでしょう。 現実世界にあるのかと言えば難しいですが、実用上使える場面は多いです。

Mokuzo100nenn
質問者

お礼

回答ありがとうございます。 数学と言うのは概念の世界の学問で、そこでのみ成立する概念(無限など)を無分別に自然界の学問(宇宙物理学など)に持ちこんでしまう事が有りますよね。 とくに、怪しげな信仰宗教などです。 今後とも、概念の世界で成立するものと、自然界で存在するものに対して分別をもって生きてゆきたいと思います。 ありがとうございました。

関連するQ&A

  • 可能無限と実無限

    可能無限と実無限って何ですか? このカテゴリで合ってますか? 自然数全体という集合が存在すること関係ありますか? 集合の濃度と関係ありますか(可算無限の友達ですか)? 実数直線の両端にくっついてる「±∞」と関係ありますか? 無限大超実数(NSA)と関係ありますか? 数学科の大学生に教える感じで、お願いします。

  • ユークリッド幾何学において 真偽が証明できない問題として 例えば『無限

    ユークリッド幾何学において 真偽が証明できない問題として 例えば『無限遠点で平行線は交わる』は その例と考えますが、合っているでしょうか。なぜなら 無限領域は 定義されていないからです。  ユークリッド幾何学の5公理は有限領域で定義されているとし、その場合に真偽が証明できない問題として 例えば『X・X=-1は根が存在しない』はその例と考えますが、合っているでしょうか。なぜなら 複素数領域は定義されていないからです。  なお 公理は証明対象にならない 命題と考えます。

  • 「集合Sの真部分集合S'からSへ全単射写像が存在する時、Sを無限集合という」を使ってのR:無限の証明は?

    無限集合の定義は 「集合Sの真部分集合S'からSへ全単射写像が存在する時、Sを無限集合という」 だと思います。 NやQやZは無限集合であることはわかりますが、 R(実数の集合)が無限集合であることは上の定義から導く事は可能なのでしょうか? N⊂Rで 「無限集合を含む集合は無限集合である」 という命題からRは無限集合と導く他ないのでしょうか?

  • 命題「存在は定義できない」について。

    「存在は定義できない」という命題が真か偽か、意見が分かれると思います。 ハイデガーなどはこの命題が真であるとの立場をとり、西洋哲学(=哲学史)を勉強した人などもこの主張を支持する人が多いようです。 私はこの命題が偽であるとの立場で論理的な説明を試みたのですが、途中で疲れてしまいました。 疲れてしまう理由は、「どこの誰かが何か言った」などという論理的ではないリファレンスが登場して、これを逐一否定しようとすると枝葉末節に入り込んでしまうからなのです。 そこで、「どこぞの某がこう言った、ああ言った」というリファレンスを無しに、命題が偽であることを説明できないかと考えています。 方法論は、公理的集合論(axiomatic set theory)を用いるのが良いと思っています。 あくまで「存在は定義できない」というのは公理ではないとし、他に、一般に合意可能な内容をいくつか公理として選択し、最終的に「存在は定義できない」という命題が偽であると立証したいのです。 数学や論理学など得意な方、どなたか、手伝っていただけないでしょうか? 質問:命題「存在は定義できない」が偽であることを立証できますか? (なお、これが命題である以上、これを公理には選択できません。)

  • 私がよく分らないのは ゲーデルの第1不完全性定理です。『形式的体系Sに

    私がよく分らないのは ゲーデルの第1不完全性定理です。『形式的体系Sにおいて、形式的体系Sが無矛盾である限り、「形式的体系Sにおいて命題は証明可能である。」という命題も「形式的体系Sにおいて命題は証明不可能である。」という命題も証明不可能である。』 と表される(別表現もありますが)とあります。 ここで現れる命題は抽象的言語であってよく分らないのです。例えばユークリッド幾何学においてはこの具体例は何でしょうか。私の理解は 『例えば無限遠点において平行線は交わるは証明可能である』はその例のように思うのですが 間違っているでしょうか。 問題は 無限遠点が公理を用いて表されるか どうか という先輩のご指摘があり公理をあらためてみてみますと 公理2に線分を限りなく伸ばすことができる とあります。つまり無限遠点は「公理2の限りなく線分を伸ばした点」と理解され 公理の定義を用いることで表されるとおもうのです。間違っているでしょうか。参考までに公理を挙げておきます。 <ユークリッド 幾何学の公理> (公理1)与えられた2点に対して、それらを結ぶ線分をちょうど1つ引くことができる。 (公理2)与えられた線分は、どちらの側にも限りなく伸ばすことができる。 (公理3)平面上に2点が与えられたとき、一方を中心とし、他方を通る円をちょうど1つ書くことができる。 (公理4)直角はすべて相等しい。 (公理5(平行線公理))直線外の1点を通り、その直線に平行な直線は1本に限る

  • 無限集合に関する証明

    無限集合が存在しないことを証明しました。 以下の証明が合っているかどうか知りたいです。よろしくお願いします。 <定義> 集合の系列、A1,A2,・・・An・・・について、以下の条件が成り立っているとき、そのときに限り、この系列を、無限拡大系列と呼ぶことにします。 1:任意のnについて、An⊆An+1 <証明> 無限拡大系列が存在すると仮定します。任意の無限拡大系列をI1,I2,・・・In・・・とします。I1,I2,・・・In・・・の和集合をI∞とします。あるnについて、I∞=Inと仮定します。まず、無限拡大系列の定義より、In⊆In+1となるIn+1が存在します。よって、I∞⊆In+1。しかし、I∞の定義より、In+1⊂I∞。よって、矛盾が生じました。よって、全てのnに対して、、I∞≠In。そして、I∞の定義より、全てのnに対して、In⊂I∞。よって、全てのnに対して、In⊆I∞。これより、I∞を全体集合としたときの、I1,I2,・・・In・・・の補集合をそれぞれ、I1',I2',・・・In'・・・とすれば、全てのnに対して、In'は空集合ではありません。そして、無限拡大系列の定義から、I1'⊇I2'⊇・・・⊇In'・・・となることが分かります。よって、I1',I2',・・・In'・・・の共通部分は空集合ではありません。よって、I1',I2',・・・In'・・・の共通部分の補集合、つまり、I∞が、全体集合であるI∞と等しくなりません。よって、矛盾が生じました。よって、無限拡大系列は存在しないとなります。そして、無限集合が存在すれば、無限拡大系列は存在することになってしまいます。よって、無限集合は存在しないとなります。

  • 無限なのに「増える」? 

    無限の性質に関して質問します。 例えば、自然数の数は無限です。そして自然数の数は増減しません。 この例から、一般に、ある集合が無限集合である場合、その集合の要素は増減しないということが言えるのでしょうか。 それとも、一般化することができずに、対象となる無限集合固有の性質によって異なる結果がありえるのでしょうか? 例題として、 宇宙空間の体積という集合Uを考えます。 集合Uが無限集合である場合、Uの要素は無限であり、したがってUの要素は増減しないので、宇宙空間の体積は増えない。つまり宇宙空間は膨張しない。 逆に宇宙空間が膨張するという観測事実を真とすれば、この集合Uは無限集合ではない。 と言っても良いのでしょうか? 問題の整理が数学的でなくて申し訳ありませんが、数学のご専門の方(=無限の扱いに慣れている方)は、「無限なものが増減する」という命題をどう捉えるのか知りたくて質問しております。 数学の専門でない素人に分かるように解説していただだければ有り難いです。

  • 無限遠線とはどこにありますか?

    ある平行線を引いたときに無限遠で交わるとしたときの点を無限遠点と言い、 これとは別の組の2本の平行線を引いたときに、無限遠点が2つ出来ないようにするために、 同次座標をとり、z=0という方程式による直線のことを、 無限遠線と言う。 ある本に書かれてある説明を少し書き換、 最後の「z=0という方程式による直線」という意味が分かりません。 z=0のというのは直線ではなく、平面ではないのでしょうか? 無限遠線とは複素平面で無限の場所を円で表現しますが、あれのことではないのでしょうか? それともこれとは異なる概念なのでしょうか? ネットなどで検索してもほとんど説明が見つかりませんでしたので、どなたか教えて下さい。

  • 私が知りたいのは ゲーデルの不完全性定理の幾何学での理解です。

    私が知りたいのは ゲーデルの不完全性定理の幾何学での理解です。 (1)第2不完全性定理では 次の表現があり『公理系Nにおいて、その無矛盾性を証明することは不可能である』、そのなかで問題として『 真であるが証明不可能な主張とは何か。』に対して 答え『公理』とあり 自己言及を表現していることは 理解し易いのです。幾何学では5公理です。この理解はたぶん正しいと思います。 ところが (2)私がよく分らないのは 第1不完全性定理です。『形式的体系Sにおいて、形式的体系Sが無矛盾である限り、「形式的体系Sにおいて命題は証明可能である。」という命題も「形式的体系Sにおいて命題は証明不可能である。」という命題も証明不可能である。』 と表される(別表現もありますが)とあります。 ここで現れる命題は抽象的言語であってよく分らないのです。例えばユークリッド幾何学においてはこの具体例は何でしょうか。私の理解は 「例えば無限遠点において平行線は交わるは証明可能である」はその例のようにおむのですが。つまり 例題には ユークリッド幾何学では未定義の無限遠点が現れており 証明はできない のです。いくら公理を増やして定義を明白にしても 未定義の領域はある ということです。 もう一つの例ですが 無限遠点は扱わないという6番目の公理を追加したとしても 例えば 「X・X=-1 は根がない は証明可能である」も証明できない と思うのです。なぜなら複素数は未定義だからです。つまり 『公理で定義されても未定義域は必ずある』が第一不完全性定理の一つの別表現ではないか と思うのです。この理解が間違っているのかどうか どなたかにお教えて頂きたかったのですが 

  • 数字の桁数が無限個ある集合

    数学は詳しくないので質問させてください。 数字の桁数が無限個ある数字と、桁数が有限個しかない数字の集合に分けると 有限個の数字の集合は、無限個の数字の集合の部分集合、といえるんでしょうか? 数学の結論はどうなっているのか教えてください。 よろしくお願いします。 といっても、質問の定義が甘い気もしますが、それはまた教えてください。