• ベストアンサー

∫exp{i(k-k')x dx =δ(k'-k)

∫exp{i(k-k')x dx =δ(k'-k) 積分範囲は(-∞,∞) となる理由がよくわかりません。 k=k'のときは被積分関数が1となるので無限大に発散することはわかるのですが k≠k'のとき被積分関数はcosとsinが出てきてそれを無限積分すると 発散(振動)するのではないかと思います。 なぜk≠k'のとき積分値が0になるのでしょうか?

質問者が選んだベストアンサー

  • ベストアンサー
回答No.1

この質問、多いですね。 δ関数は本来は極限で定義される超関数なので、 普通の意味の積分では求められないのです。 前に書いた回答がありますのでどうぞ。 http://okwave.jp/qa/q5544688.html あと、このwikipediaの「Sinc 関数による近似」 http://ja.wikipedia.org/wiki/%CE%94%E9%96%A2%E6%95%B0#Sinc.E9.96.A2.E6.95.B0.E3.81.AB.E3.82.88.E3.82.8B.E8.BF.91.E4.BC.BC も参照してください。

dora-pon
質問者

補足

ではこの積分はデルタ関数を表わす式で 右辺→左辺の書き方が普通なのですか? sinやcosの無限積分は発散しますよね?

その他の回答 (2)

回答No.3

>sinやcosの無限積分は発散しますよね? 発散はしません.発散と不定は全く違うので区別してください. >右辺→左辺の書き方が普通なのですか? フーリエ解析のときは普通です. が,それ以外でこのタイプの積分に出会ったことはないので, この積分が出てきたらまず間違いなくフーリエです. その意味でこの積分をデルタ関数で書くのは普通です.

dora-pon
質問者

お礼

ご回答ありがとうございます

  • post_iso
  • ベストアンサー率48% (14/29)
回答No.2

f(x)=δ(x)をフーリエ変換すると F(k)=∫e^{-ikx}δ(x)dx    =1 となります。 これをフーリエ逆変換をすることで f(x)= δ(x)=(1/2π)∫e^{ikx}dk

dora-pon
質問者

補足

ご回答ありがとうございます。 ではeをsin,cosに直して積分する 方法は間違っているのでしょうか? そもそもsin,cosに直してはいけないのですか?

関連するQ&A

  • 不定積分∫√[x(x+1)] dx の問題についておしえてください。

    教えていただきたいのは以下の問題です。 ∫√[x(x+1)] dx を適当な初等関数を用いた変数変換で有理関数の積分に帰着させよ (積分は実行しなくてもよい) √(x(x+1)) = √(x^2+x) = (1/2)*√[{2(x+(1/2))}^2-1] 2(x+(1/2)) = 1/Cos[x] とおくと dx = {(2x+1)^2/2}*Sin[θ] dθ ∴∫√[x(x+1)] dx = ∫(1/2)√[(1/Cos^2[θ])-1]*{(2x+1)^2/2}*Sin[θ] dθ = ∫(1/4)*Tan[θ]*Sin[θ]/Cos^2[θ] dθ =… でいいのでしょうか? また、積分を実行するとしたらどうすればいいのか教えてください。

  • ∫[0,+∞] sin(kx)dxの値は?

    以下の計算になると思いますが、、、 ∫[0,+∞] sin(kx)dx=∫[0,π/2k] sin(kx)dx+∫[π/2k,+∞] sin(kx)dx =∫[0,π/2k] sin(kx)dx + ∫[0,+∞] cos(kx)dx =1/k + ∫[0,+∞] cos(kx)dx ここで、∫[0,+∞] cos(kx)dx は、 ∫[0,∞] cos(kx)dx=(1/2)∫[0,∞]{exp(ikx)+exp(-ikx)}dx =(1/2)∫[0,∞] exp(ikx)dx+∫[(0,∞] exp(-ikx)dx =(1/2)∫[-∞.0] exp(-ikx)dx+∫[0,∞] exp(-ikx)dx =(1/2)∫[-∞.+∞] exp(-ikx)dx =δ(k)/2 です。 したがって、 ∫[0,+∞] sin(kx)dx=1/k + δ(k)/2 と思います。 しかし、 k=0では、 ∫[0,+∞] sin(kx)dx=∫[0,+∞] 0 dx=0 で、右辺は、δ(k)/2は怪しいですが、少なくとも、 1/k=∞ です。 正しい、積分方法を、お教え下さい。

  • I =∫e^(-x^2)dxを求めるためには?

    数学で、 I=∫e^(-x^2)dx (積分範囲 0→∞) をI^2を考えることで求めよという問題が出ました。 この問題についての解答方法を教えてください。 広義積分の範囲で教科書を探したのですがよくわかりませんでした。 さらに、それを利用して I=∫x^(1/2)*e^(-x)dx (積分範囲 0→∞) を求めるという問題が出ました。これについてもよろしくお願いします。

  • 積分∫[0→1]√(1-x^2)dx=π/4

    定積分∫[0→1]√(1-x^2)dx=π/4 この計算の仕方が分かりません。 x=sinθとおく。dx=cosθdθ。x[0→1]がθ[0→2/π]になる。 ∫[0→1]√(1-x^2)dx=∫[0→2/π]√cos^2θdθ ここまでは合ってますか? 次に半角の公式を使って(この半角の公式とやらがよく分からないのですが)1/2∫[0→2/π]1+cos2θdθとなり =π/4となる様です。計算の説明を分かりやすくお願い致します。 また、π/4 は 45°で、cos(π/4)=1/√2、sin(π/4)=1/√2 ですが、それとの関係はどうなるのでしょう?

  • ∫[0→t] exp(-a^2/x)dxの計算

    よろしくお願いいたします。  I=∫[0→t] exp(-a^2/x)dx (aは正の定数です。) この定積分の計算ができなくて困っています。 ご存知の方よろしくお願いいたします。 置換積分や部分積分をしてますが、うまくいきません。 a/√x=zと置いて置換すると∫[a/√x→∞] {exp(-z^2)}/z dz という積分項が出てしまい更に分からなくなってしまいました。

  • ∫(0,∞){x/(exp(x)+1)}dx=π^2/12 の解き方を

    ∫(0,∞){x/(exp(x)+1)}dx=π^2/12 の解き方を教えてください。 岩波 数学公式Iにこの公式が載っているのですが、どのように式変形をして答を得るのかが分かりません。 よろしくお願いします。

  • f(a)=∫[0~∞]exp(-x^2)・cos(2ax)dx を a で微分すると?

    f(a)=∫[0~∞]exp(-x^2)・cos(2ax)dx をaで微分すると f'(a)=∫[0~∞](-2x)・exp(-x^2)・sin(2ax)dx となると参考書に書いてあるのですが、なぜそうなるのか分かりません。 一様収束の考え方を使うというヒントが書いてあるのですが、どういうことなのでしょうか。 教えてください、お願いします。

  • ∫cos(x)sin(x)dx を置換積分したいんですが

    ∫cos(x)sin(x)dx を置換積分したいんですが どうも答えが一致しません。 t=sin(x) dt/dx = cos(x) ∴dt=cos(x)dx ∫cos(x)sin(x)dx =∫t dt =(1/2)t^2 =(1/2)sin(x)^2 + C 答えは -(1/2) cos(x)^2 + C となるはずなんです。 どこで間違ったのでしょうか?

  • 留数定理による実定積分の計算について

    留数定理による実定積分の計算について 現在複素積分について勉強中のものです。 ∫^{+∞}_{-∞}f(x)exp{itx}dxという形の積分の計算なのですが t>0については ∫^{+∞}_{-∞}f(x)exp{itx}dx=2πiΣ^{m}_{k=1}Res{f(z)exp{itz}} となりf(z)が偶関数のとき ∫^{+∞}_{0}f(x)cos(tx)dx=πiΣ^{m}_{k=1}Res{f(z)exp{itz}} となりf(z)が奇関数のとき ∫^{+∞}_{0}f(x)sin(tx)dx=πΣ^{m}_{k=1}Res{f(z)exp{itz}} となりますが t<0のときはどうなるのでしょうか。 マイナスになるだけでしょうか。 よろしくお願いします。

  • 複素積分

    I1=∫[-∞,-∞]cos(a*x)/(x^2+b^2)dxを複素積分を使って求めます。 まず ∫[-∞,-∞]cos(a*x)/(x^2+b^2)dxの被積分関数の分子にi*sin(a*x)を (iは虚数単位)を加えても加えた部分が奇関数でかわらないので加え ると ∫[-∞,-∞]{cos(a*x)+i*sin(a*x)}/(x^2+b^2)dxとなります するとI=∫[-∞,-∞]exp(i*a*x)/(x^2+b^2)dxです。 ここで複素積分 I=∫exp(i*a*z)/(z^2+b^2)dz (積分路は実軸と虚軸の正の部分を通る 反時計回りの半径Rの半円) またI2=∫exp(i*a*z)/(z^2+b^2)dz (積分路は虚軸の正の部分のみを通 る反時計回りの半径Rの半円)を考えるとRが十分大きいとき I=I1+I2・・・(1)になります。 Iは留数定理よりI=2*π*i*Res[f,i*b]=π*exp(-a*b)/b・・・(2) I2はz=R*exp(i*θ)とおき I2=∫[0,π]exp(i*a*R*exp(i*θ))/(R*exp(i*θ)^2+b^2)dθ =∫[0,π]exp(-a*R*sinθ+)*exp(i*a*R*cosθ)*i*R*exp(i*θ)/(R^2*exp (2*i*θ)+b^2)dθ 三角不等式より 0<|I2|<∫[0,π]|exp(-a*R*sinθ+)*exp(i*a*R*cosθ)*i*R*exp(i*θ)|/|(R^2*exp(2*i*θ)+b^2)|dθ<π*R*exp(-a*R*sinθ)/|-R^2+b^2|・・・(3) ここでsinθ >0よりでexp(-a*R*sinθ)<1なので π*R*exp(-a*R*sinθ)/|-R^2+b^2|<π*R/|-R^2+b^2|となり π*R/|-R^2+b^2|はR-->∞で0なので結局 |I2|-->0   なので(1)より I1=π*exp(-a*b)/bが答えです。  これはわかるのですが、スタートで i*sin(a*x)ではなく-i*sin(a*x)を加えても変わらないですよね? そこで-i*sin(a*x)を加えて実際にやってみると (2)の部分はπ*exp(a*b)/bに変わってしまい、また (3)の部分はπ*R*exp(a*R*sinθ)/|-R^2+b^2|となってしまいこれでは R-->∞で発散するように思えます。 どこがまちがっているのでしょうか