• ベストアンサー

漸化式の問題です

こんな問題が出てきました。  A1=3  An+1=An+2^n  これの一般項Anを求めよ。 ここで私は、まず上式を使って、 A1=3 A2=5 A3=9  ・  ・  ・ と求め、そこから階差数列と分かり、さらに An+1-An=2^n と変形し、そこから求めようと思いました。 しかし、どうしても答えがずれてしまいます。 正しい解きかたと解答を教えてほしいです。 回答よろしくお願いします。

  • opin
  • お礼率100% (12/12)

質問者が選んだベストアンサー

  • ベストアンサー
  • proto
  • ベストアンサー率47% (366/775)
回答No.3

何がどうずれるのか具体的に書いてもらうと解説がしやすいと思うのですが。 階差数列の公式より   A[n] = A[1] + Σ[k=1,n-1]{2^n}      = 3 + Σ[k=1,n-1]{2^n} 右辺のΣについては、等差数列の和の公式を思い出して。 初項a=2,公比r=2,項数n-1として   Σ[k=1,n-1]{2^n} = 2*(2^(n-1)-1)/(2-1) = 2^n-2 とすれば良いでしょう。

opin
質問者

お礼

回答ありがとうございます。 丁寧でとてもわかりやすかったです。 ずれた理由は、等差数列の和の初項を、2ではなく3にしていました。

その他の回答 (3)

  • CC-Cue
  • ベストアンサー率62% (5/8)
回答No.4

そこまでできているならできると思います。 An+1-An = Bn (階差数列)なら 階差数列からもとの数列を求める場合、 An = A1 + Σ[k=1~n-1]Bk が分かっていれば答えはすぐそこ!!

opin
質問者

お礼

回答ありがとうございます。 おっしゃられた通りすぐそこまで来ていました。 この公式は、しっかり頭に入れておこうと思います。

  • arrysthmia
  • ベストアンサー率38% (442/1154)
回答No.2

いいじゃありませんか。 その式の両辺を n = 1 から n = M まで 総和しましょう。 a(M+1) - a(1) = Σ[n=1…M] 2~n. 右辺は、等比級数ですね? 最後に、M = N - 1 で置き換えれば 終わりです。

opin
質問者

お礼

回答ありがとうございます。 なるほど。今回は、公式のNがN-1になっているわけですね。

  • rabbit_cat
  • ベストアンサー率40% (829/2062)
回答No.1

解き方はあってる。 途中の計算を見直してみてください。

opin
質問者

お礼

回答ありがとうございます。 解き方があっていてホッとしました。 さっそく見直してみます。

関連するQ&A

  • 漸化式の問題なのですが。

    数列{an}で初項から第n項までの和をSnとするとき、 Sn=2an-nという関係だと、一般項はどうなるか。 という問題なのですが。 数列は {an}=a1+a2+a3+a4+a5+・・・・・・・+an=2an-n 書いてみたのですが、どうにも何をしたらよいのか分からなくて困っています。 やはり階差をとって階差数列にして考えるのでしょうか?

  • 漸化式

    漸化式についてなんですが、 問題;数列{an}の初項から第n項までの和をSnとするとき、関係式Sn=2An+nが成り立っている。 n>=1のとき、Bn=A(n+1)-Anとおく。Bnをnを用いて表せ。 というものなんですが、どう変形したりしてもnで表せません。 答えはBn=-2^nなのですが、途中式が解法として載ってないのでよく分かりません。 ご解答お願いします。

  • 漸化式

    よろしくお願いします。 [問題] 次の条件で定められる数列{An}の一般項を求めよ。  A1=2、An+1=An/(1+An) (n=1、2、3、……) [解] 条件により A1=2/1、A2=2/3、A3=2/5、A4=2/7  よって、一般に         An=2/(2n-1) ・・・・・・(1)  となることが推測される。   一般項が(1)である数列{An}が、条件を満たすことを示す。  [1] (1)でn=1とおくと  A1=2  [2] (1)をAn/(1+An)に代入すると       An/(1+An)=2/(2n-1)÷{1+2/(2n-1)}              =2/(2n-1)÷(2n+1)/(2n-1)              =2/(2n+1)              =2/{2(n+1)-1}    よって、An+1=An/(1+An) が成り立つ。  [1]、[2]から、求める一般項は  An=2/(2n-1)。 ※このサイトだと項の番号をうまく表記できないので、A1は初項、Anは第n項、An+1は第n+1項などと表しています。 この問題は数列の一般項を推測し、推測した一般項が条件を満たすことを示して、一般項を求めてるみたいなのですが。 [2]の証明で、どうして(1)が漸化式を満たしてるのか、よく分かりません。どうしてですか?。 また、(1)は推測したものだから、全ての自然数nについて(1)が必ず成り立つとは言えないですよね?。なら、(1)を漸化式に代入できないと思うのですが、どうして代入できるのですか?。 以上ですが。分かるかた、教えてくださいm(__)m。

  • 漸化式で質問です。

    次の様に定められた数列{an}の一般項を求めよ。 a1=2, 3a+1 = 2an + 3 (n = 1,2,3,…) 答 3-(2/3)^n-1 上の答えになるらしいのですが、階差数列を利用する方法で自分で解くと答えが合いません。 どこで間違えているか知りたいので、途中段階を出来るだけ詳しく教えていただけないでしょうか。

  • 漸化式と数列

    数列a1,a2,......anが a1=2, an+1=3an+8(n=1,2,3,......)を満たしている時 (1) 一般項anをnであらわせ (2) 初項から第n項までの和をSnであらわせです 考え方を教えてください ちなみに答えは an=2/3^n -4 Sn=3^n+1  -4n-3です

  • 数IIBの数列の漸化式の問題です。

    数IIBの数列の漸化式の問題です。 本当に分からないので、基礎の知識から詳しく教えてもらえるとありがたいです・・・ 1. 数列1,1,4,1,4,9,1,4,9,16,1,4,9,16,25,・・・・・・がある。 この数列の第100項および初項から第100項までの和を求めよ。 2 数列1,2,3,・・・・・,nにおいて次の積の和を求めよ。 (1)異なる2つの項の積の和(n≧2) (2)互いに隣り合わない異なる2つの項の積の和(n≧3) 3 次の条件によって定められる数列{An}の一般項を求めよ。 (1)A1=1 An+1=9-2An (2)A1=1 An+1=4An+3 4 数列{An}の初項から第n項までの和SnがSn=n-Anであるとき、a1,a2,a3および{An}の一般項を求めよ。

  • 漸化式から一般項を求める問題です。答え合ってますか

    a1=3, an+1=1/2an+1 この条件によって定められる数列anの一般項を求めよ。という問題ですが、計算したら答えが an=1/2^(n-1)+2 となりました。 これは教科書の問題で答えがありません。この答えで合ってますか?

  • だれか漸化式について教えてください(第二段)

    簡単の為以下の例を採りあげます。    An+1=2An-1 ・・・・・(1)  A1=2、n>=1   (1)式は    An+1-1= 2(An-1)・・・・・(2)  と変形できるので数列{An-1}は公比2の等比数列で  あることが判ります。  {An-1}の初項はA1-1=2-1=1  したがって数列{An-1}の一般項は   An-1=1・2の(n-1)乗 ・・・・・(3)    を満たし、一般項Anは   An=2の(n-1)乗+1・・・・・(4)  となります。  ------------------  読本のなかの上記説明が次の点で理解できません。   疑問1.(2)式は“An+1-1”が公費2の等比数列である        ことを示しているのではないか?        どちらでもよいことかも知れないのですが紛らわしい        ので“An+1-1”としたほうがよいと思うのです。   疑問2. 数列{An-1}の初項は1なので(3)式が成り立つと        なっていますが、nに1、2、3、・・・と代入して        “An-1”を計算していきました。すると        1、2、4、8、・・・となりますした。        公式An=nの(n-1)乗はnが1、2、3、4、・・・の自然数        (交差1の等差数列)の場合に成り立つとされてきた        のに突然等比数列になっています。        それで正しいのでしょうが説明手順として納得できません。        スッキリ納得できる方法はないでしょうか。  

  • 隣接3項間の漸化式

    隣接3項間の漸化式 次の条件によって定められる数列{an}の一般項を求めよ (1)a1=1,a2=2,a(n+2)+4(an+1)-5an=0(括弧の部分は添え字です。以下括弧は省略します) 指針 隣接3項間の漸化式→まず、an+2をx^2,an+1をx,anを1とおいたxの2次方程式(特性方程式を解く。その2解をα、βとするとan+2-αan+1=β(an+1-αan),an+2-βan+1=α(an+1-βan) が成り立つ。この変形を利用して解決する。 (1)できる方程式の解はx=1、ー5→解に1を含むから、漸化式はan+2-an+1=-5(an+1-an)と変形され、階差数列を利用することで解決 教えてほしいところ ・なぜ、an+2をx^2,an+1をx,anを1とおいたxの2次方程式(特性方程式を解くと、an+2-αan+1=β(an+1-αan),an+2-βan+1=α(an+1-βan)を満たすα、βが求まるんですか?? ・α=1,β=ー5として an+2-αan+1=β(an+1-αan),an+2-βan+1=α(an+1-βan)のどちらを利用しても同じ答えが出るのはなぜですか???

  • 数列の漸化式質問

    教科書で漸化式の記述です。 an+1=pan+qで与えられている数列の求め方 例 a1=3 an+1=3an-4 で定義されている数列を{an}とする 数列{an}は 3 , 5 , 11 , 29 , 83 ,・・・となりますよね。 この数列{an}の各項から2を引くとできる 数列を{an -2}は 1 , 3 , 9 , 27 , 81 , ・・・ となる。数列{an -2}は、初項1 公比3 の等差数列になっている。 数列{an}に対して、数列{an -2}の一般項は an -2=1×3^n-1となっています。 ここが何でn-1なのですか? {an}はn項あると思うのですが・・・ できるだけ詳しい解答お願いします。