• ベストアンサー
※ ChatGPTを利用し、要約された質問です(原文:線形の質問)

線形の質問の部分空間

このQ&Aのポイント
  • 線形の質問で、2つの部分空間の共通の基底を求めます。
  • 2つの部分空間を生成する行列の基底を求め、それらの共通の基底を求めます。
  • 計算結果は(-1 -8 -6 -6)tです。

質問者が選んだベストアンサー

  • ベストアンサー
  • uyama33
  • ベストアンサー率30% (137/450)
回答No.1

 定数倍したものは(0倍を除く) すべて、その1次元空間の基底になります。  したがって、結論は、 いいです!! です。  でも、きれいな形のものを 選んだ方がかっこいいと思います。

rousei
質問者

お礼

わかりました^^ ありがとうございました! ちょっぴりすっきりしました♪

全文を見る
すると、全ての回答が全文表示されます。

関連するQ&A

  • 線形の証明問題を教えてください

    線形代数の証明問題を教えてください 1、m×n行列全体のつくるベクトルの空間Vにおいて、(i.j)成分が1で他の成分がすべて0であるm×n行列をEijとすると、 Eij(i=1,2・・・、m ;j=1,2・・・n)はVの基底である事を示せ。 2、Vを有限次元ベクトル空間、U、WをVの部分空間とするとき dim(U+W)+dim(U∩W)=dimU+dimW であることを示せ。 (dim(U∩W)=r ,dimU=s ,dimW=tとする。a1,・・・,arをU∩Wの基底とし、これを拡張して得られるUの基底を a1,・・・,ar, b1・・・,bs-r, Wの基底をa1,・・・,ar ,c1・・・,ct-rとする。 a1,・・・,ar, b1・・・,bs-r, c1・・・,ct-r がU+Wの基底になることを示す。) この2問がどうしても証明できません。どちらでもいいので分かる方解答をお願いいたします。

  • 線型代数

    実線型空間R^4におけるv1,v2,v3,v4で張られる部分空間をWとします。また、  v1=t(1,1,-2,0),v2=t(1,-1,0,-2),v3=t(-2,1,1,3),v4=t(-1,2,-1,3) とします。ここで、Wの基底をv1,v2とすると、直交補空間W’の基底は、  u1=t(1,1,1,0),u2=1,-1,0,1) dimW’=2 となります。 以上の設定の下で、次の問題がよくわからないので質問させていただきます。 (1)2×4行列Aで、KerF=Wとなるものを1つ求める。 (2)4×2行列Bで、ImF=W’となるものを1つ求める。 という問題です。ここで、線型写像fについては、m×n行列Xに対して、 f;R^n→R^mとし、f(v)=Xv(vはR^nの元)という写像です。 求める行列を具体的に文字で置いて計算してみたのですが、うまくいきません。 (1)については、まず求める行列Aを A=|a1 a2 a3 a4| |b1 b2 b3 b4| と置いて、KerF=Wより、v1をとってAv1=0というように計算していこうと考えましたが、1行と2行の係数が同じになってしまいます。(2)についても同様の考え方で計算してみたのですが、この場合も同じような結果になってしまいます。どのように考えていったらいいのでしょうか?ご教授お願いします。 以上読みづらい文章となってしまいましたが、よろしくお願いします。

  • 部分空間の基底の求め方

    ベクトルa1=t(1,2,1,-1) a2=t(3,4,1,1) a3=t(0,1,1,-2) a4=t(5,3,-2,9)  ※t(p,q,r,s)は転置行列  によって生成される部分空間をWとします。このときWの次元とそのひと組の基底を求めよ。 という問題なのですが次元については   (1 3 0 5) A=(2 4 1 3)   (1 1 1 -2)   (-1 1 -2 9) とおいてこれの階数を求めてdimW=2と求められたのですが1組の基底の求め方がわかりません。 基底の求め方を教えてください。

  • 線形代数

    和空間と合併集合というのは、どう違うのですか? つまり、複素線形空間Vに対する部分空間W_1とW_2を考えたとき、W_1+W_2 と W_1∪W_2 の違いは何なのでしょうか? 教科書に「和空間は合併集合から生成される部分空間にほかならない」という記述があるのですが、 (1)2つの部分空間の合併集合はまた、Vの部分空間になる (2)Vの部分集合V'がVの部分空間となっているとき、V'から生成される部分空間はV'にほかならない という(1)と(2)から、W_1+W_2とW_1∪W_2は同じものだという考えに至ってしまったのですが・・・。 (1)か(2)のどちらかが間違っているのか、或いは両方とも正しいが、穴があるのか、ご指摘下さい。 また、これに関連してですが、次元定理(で宜しいのでしょうか)と呼ばれる以下の公式 dimW_1 + dimW_2 = dim(W_1 + W_2) + dim(W_1∩W_2) において、dim(W_1 + W_2) を dim(W_1∪W_2) と置き換えても成り立つのでしょうか。 一応この定理の証明を見る限りでは、W_1∪W_2でもよさそうに思ったのですが、そのあたりで勘違いをしているかもしれません。

  • 線形空間についての質問です

    線形空間 K³のベクトル(1,2,-1)と(0,3,-1) を基底とする K³ の部分空間を W とするとき、W の直交補空間 W⊥ の基底を求めよ この問題が分かりません…

  • 線形代数わかりません・・・

    W={(x,y,z)∈R^3|x-y+z=0, 2x+3z=0, x+5y+4z=0} においての基底の求め方というのはどうすればいいんですか。 自分なりに 行列に直す⇒行に関する基本変形⇒2番目の式が1番目と3番目の一次結合⇒1番目と3番目の式は一次独立⇒1番目と3番目の式は一組の基底 という感じでやってみたのですが、はっきりと基底等このあたりの話を理解できていないため、おそらく間違ってるんでしょう また、Wの直交補空間とその一組の基底と次元も求めないといけないのですが、それについても教えていただければ助かります。 どうか宜しくお願いいたします。

  • 線形代数の問題が解りません。

    線形代数の問題が解りません。 線形代数の問題が解りません。 宜しかったら教えてください。 1.次のシステムを考える x(t)= A x(t) + b u(t)   ・・・I xに上点あり A=[1 0 0 0;0 -1 0 1;0 0 -1 0;2 0 -1 -1] b=[-1 1 0 -1]の転置 y(t)=c x(t)         ・・・II             c=[1 0 1 0] 1-1. このシステムの可観測行列をMとするとき、rank=2を示せ これは可観測行列M=[c cA cA^2 cA^3]の転置 となるので、行基本変形で M=[c cA cA^2 cA^3] =[1 0 1 0;1 0 -1 0;1 0 1 0;1 0 -1 0] ・ ・ ・ =[1 0 0 0;0 0 1 0;0 0 0 0;0 0 0 0] と変形でき、rankM=2となり、ここまでは何とかわかりました。 1-2.KerMの基底ベクトルω3、ω4を求めよ 1-3.ベクトルω1、ω2をω1、ω2、ω3、ω4がR^4の基底ベクトルとなるように定めよ 1-4.T=[ω1 ω2 ω3 ω4]とおく。状態変換x(t)=Tx(t) (右辺のxの上には~あり) によって、状態方程式Iと出力方程式IIはそれぞれどのような式へと変換されるか 1-5.このシステムの伝達関数を求めよ 1-6.システム(A,b,c)の極、および、伝達関数G(s)の極を求めよ 2.Mをk*l行列とする。 2-1 Mの像Im M がベクトル空間R^kの部分空間となることを示せ 2-2 Mの核Ker M がベクトル空間R^lの部分空間となることを示せ 1-5、6については 前の定義に システム(A,B,C)の伝達関数G(s)は G(s)=C(sI-A)^(-1)B= C adj(sI-A)B/det(sI-A) と表せるから s=pが伝達関数G(s)の極なら、s=pがシステム(A,B,C)の極である、 とあるのですが、よく意味が解りませんでした。関係がなかったらすみません。 どなたかわかる方がいましたら、一問でも構いませんので 具体的な解き方も含めて教えてください。 宜しくお願いします。

  • 線形代数 部分空間の基底を求める

    写真の3番の(ii)が分かりません。 W1とW2の基底から行列を作り、係数行列に行基本変形を行ったところ、ランクは1となりました。 W1に属するベクトルの1次結合= W2に属するベクトルの1次結合、となるようにするとW1∧W2の基底として、(1,i,-1,-i)tが得られました。 W1+W2の基底は、上記の係数行列はW1とW2の基底から成ることより、一次独立なベクトルの数あると思うのですが、そのランクは1のため1つとなってしまい答えと合いません…。 W1∧W2の基底を求める方法も含めて教えて頂けないでしょうか。 ∧は積集合、tは転置のことです。

  • 線形代数についての質問です。お願いします。

    (2)が解答の仕方がわかりません。(3)はどう解答にもっていけばいいのか分かりません。 できれば解答と解説をお願いします。 やってもらえるととても助かりいます。 (1) R^2の基底 <u_1=転置(1,3) u_2=転置(2,5)> R^3の基底 <v_1=転置(1,0,-1) v_2=転置(0,1,2) v_3=転置(-1,2,2)> に関する表現行列Aを求めよ。 (2) 上で求めた行列Aに対して基本変形を行うことで、その標準形を求めよ。 (基本変形を明記する必要はないが、そのようになる理由は述べよ) だだし、行列の標準形とは、一般に (E 0)の形の行列のことである。 0 0 ここで、Eは単位行列、0はゼロ行列を表す。 ランク標準形ともいう。 (3) fの表現行列が標準形となるように、R^2、R^3の各々の基底を一組求めよ。 以上の問いをお願いします。

  • 解き方を教えて下さい。m(_ _)m

    A= ( 1 1 1) (-1 2 2) (-1 0 4) v= (2) (1) (1) w= (1) (2) (1) Wをv,wで生成される3次元数ベクトル空間R^3の部分空間とする。 (1)Av∈W, Aw∈Wであることを示せ。 (2)W上の一次変換f_A:W→Wを、 f_A(x)=Ax (x∈W)で定義する。   Wの基底β={v,w}に関する表現行列Bを求めよ。 (3)nが正の整数のとき、A^nwを、vとwの一次結合で表せ。 解説よろしくお願いします。