• ベストアンサー

集合と論理

「f(x)=x^2+ax+b とする。∀n∈Z に対して、f(n)が偶数となるためのa,bの条件を求めよ。」 この問題に対して私は以下のように解答しました。 「(ⅰ)nが偶数 つまりn=2p(p∈Z)と表わせるとき   f(n)=f(2p)=2*2p^2+2ap+b   f(n)が偶数となるとき bが偶数であることが必要  (ⅱ)nが奇数 つまりn=2q+1(q∈Z)と表わせるとき   f(n)=f(2q+1)=2*2q^2+2(a+2)q+a+b+1   f(n)が偶数となるとき a+b+1が偶数であることが必要  (ⅰ),(ⅱ)より   f(n)が∀n∈Z に対して偶数となるとき   aは奇数、bは偶数であることが必要  逆にaは奇数、bは偶数 すなわち a=2s+1(s∈Z), b=2t(t∈Z) であるとき f(x)=x^2+(2s+1)x+2t となり (a)nが偶数 つまりn=2p(p∈Z)と表わせるとき f(n)=2*2p^2+2p(2s+1)+2t となり f(n)は偶数  (b)nが奇数 つまりn=2q+1(q∈Z)と表わせるとき f(n)=2*2q^2+2(2s+3)q+2t+2 となり f(n)は偶数  となるから f(n)は∀n∈Z に対して偶数となる  以上よりn∈Z に対して、f(n)が偶数となるためのa,bの条件は  aが奇数で、bが偶数であること」 設問に対する証明はこれで良いのでしょうか。   

  • gurda
  • お礼率5% (2/39)

質問者が選んだベストアンサー

  • ベストアンサー
  • take_5
  • ベストアンサー率30% (149/488)
回答No.2

f(x)=x^2+ax+b とすると、題意からf(1)=1+a+b、f(2)=4+2a+bも2で割り切れなければならない。 1+a+b=k、4+2a+b=m (kとmは整数)より、a=2(m-k)-3、b=2(2k-m+1)であるから、aは奇数、bは偶数でなければならない。 逆に、a=2(m-k)-3、b=2(2k-m+1)の時、f(n)=n^2+an+b=n^2+{2(m-k)-3}*n+2(2k-m+1)=(n^2-3n+2)+2(mn-kn+2k-m)=(n-1)*(n-2)+2(mn-kn+2k-m)。 (n-1)*(n-2)は連続する整数の積から2の倍数、2(mn-kn+2k-m)は当然2の倍数。 以上から、aが奇数、bが偶数である事が必要十分条件である。

その他の回答 (3)

  • Sin0
  • ベストアンサー率26% (5/19)
回答No.4

合っていますよ。take_5さんの回答にあるように必要条件を出す時には、必ずしも一般的なものを代入する必要はないということは、ポイントじゃないですかね。 あとtake_5さんへ 先の問題のレスというか・・が遅れてすいませんね。もう打ち切られて返事できませんでしたけど、あれは勿論質問者へ対してです。「回答に書いてあるように」と書いておいたんですが分かりにくかったですかね。誤解が生じそうな書き方で申し訳ありませんでした。この場を借りさせて頂きますm(-.-)m

  • take_5
  • ベストアンサー率30% (149/488)
回答No.3

書き込みミス。 >1+a+b=k、4+2a+b=m (kとmは整数)より        ↓ 1+a+b=2k、4+2a+b=2m (kとmは整数)より

  • take_5
  • ベストアンサー率30% (149/488)
回答No.1

面倒なことするね。 題意を満たすaとbの条件を求めて(=必要条件)、それが十分条件でもある事を示せば簡単なのに。

関連するQ&A

  • 論理と数学

    nが2以上の整数,a,bを0以上の整数とする。 nが奇数であり,かつ素数でないならば,a^2-b^2=nを満たすa,bが存在することを示せ。 解:a^2-b^2=nから (a+b)(a-b)=n・・・(1) nは奇数であり,素数でないから,n=pqとなる奇数p,q(n>p>=q>1)が存在する。 よって,(2)を満たすa+b,a-bの1つはa+b=p,a-b=qすなわち・・・・・・以下省略 教えてほしいところ 1つはとありますが、a+b=p,a-b=q以外にないので1つはと書く必要あるんですか??

  • この数学の集合の問題がわからないです。教えてください。

    この数学の集合の問題がわからないです。教えてください。 自然数N={1,2,3・・・} 整数Z={0、±1、±2、±3・・・} このNとZを用いて以下の集合を内包的定義で記述せよ。 1)正の奇数全体 A={1、3、5、7・・・} 2)偶数全体 B={・・・-4、-2、0,2,4・・・} 3)3で割ると2余る整数全体 E={・・・-4、-1,2,5,8・・・} 4)2桁の自然数 F={10,11,12・・・99} 例)正の偶数全体 P={2,4,6・・・} P={2n|n∈N」 これらの答えを教えてください。よろしければちょっとした解説等もあればありがたいです。 よろしくお願いします。

  • 集合の証明

    S={x∈Z|xを3で割ると余りが1} T={x∈Z|xを3で割ると余りが2} Q={x∈Z|xは偶数} R={x∈Z|x^2を3で割ると余りは1} M={x∈Z|xを6で割ると余りは5} L={x∈Z|xは奇数} J={x∈Z|xは6で割ると余りは1} この時 *1  R⊂S∪Tを証明しなさい。(ただしS∪T⊂R については、証明されているものとする。) *2 T-Q=Mを証明しなさい。 *3 S∩L=Jを証明しなさい。 という問題です。 どなたか教えて頂けないでしょうか? お願いします。

  • 集合、論理問題

    (1)2つの命題p,qの真偽と、p⇒qの真偽の関係を真偽表で表せ。 (2)条件『x>y⇒x^2>y^2』が成り立つような実数x,yの存在範囲を求めxy平面上に図示せよ。((1)の真偽表に基づいて考察すること) (3)任意の実数 x に対して、条件『x>y⇒x^2>y^2』が成り立つ為の実数 y の条件を求めよ。((2)の図に基づいて考察すること) (4)対称領域をXとする2つの条件をP(x),q(x)とするとき、任意のxに対して条件『p(x)⇒q(x)』が成り立つことと『{x∈X|p(x)}⊆{x∈X|q(x)}』は同値である事を示せ。((1)の真偽表に基づいて考察すること、また証明の際ベン図は用いないこと。) (5)任意の実数x,yに対して、条件『x^2+(y-1)^2≦z⇒y≧x』が成り立つ為の実数zの条件を求めよ。((4)に基づいて考察すること) (1)の解答は p q p⇒q ------------ t t t f t t f f t t f f ※t=true f=false だと思うのですが・・・ (2)の解答は y=xの直線とx軸の間の範囲だと思うのですが・・・。 (3)の解答は  yの条件とはどのように答えたら良いのかわかりません。 (4)、(5)ともに全くわからないのです。 集合や命題がとにかく苦手です。 どなたか教えて頂けないでしょうか? よろしくお願い致します。

  • 論理と集合 必要条件・十分条件

    (1) 実数x,y,zに対し、x+2y+z^2=0はx=y=z=0であるための 必要条件であるが十分条件でない (2) 整数nについて、√nが無理数であることは、nが奇数であるための 必要条件でも十分条件でもない (3) a、bは実数とする。b<0であることは、2次方程式x^2+ax+b=0が実数解をもつための 十分条件であるが必要条件でない 全て求め方が全くわかりません…。 どのように考え計算すれば良いでしょうか。

  • 行列の写像のwell-definedの証明ができま

    宜しくお願い致します。 N_n:={X;Xはn×n正規行列}とし,2つの写像f:R→R,F:N_n→R^{n×n}を f(x):=Σ_{k=0}^∞a_kx^kとし,Fは X=P^t diag(λ_1,λ_2,…,λ_n)P (但し,Pは直交行列,diag(λ_1,λ_2,…,λ_n)は対角行列)と書けるので, F(X):=P^t diag(f(λ_1),f(λ_2),…,f(λ_n))Pと定義するとFはwell-definedである事を示す問題です。 [証] 背理法を使って証明する。 X:=P^t diag(λ_1,λ_2,…,λ_n)P=Q^t diag(μ_1,μ_2,…,μ_n)Q…(*)の時 (ここで,λ_1,λ_2,…,λ_n,μ_1,μ_2,…,μ_nはXの固有値となりますね), P^t diag(f(λ_1),f(λ_2),…,f(λ_n))P≠Q^t diag(f(μ_1),f(μ_2),…,f(μ_n))Qとなったと仮定すると, 左辺=(Σ_{k=1}^n p_{ki} f(λ_k) p_{jk}), 右辺=(Σ_{k=1}^n q_{ki} f(μ_k) q_{jk}), なので ∃l,m∈{1,2,…,n}; Σ_{k=1}^n p_{kl} f(λ_k) p_{mk}≠Σ_{k=1}^n q_{kl} f(μ_k) q_{mk}で, (*)より, ∃r,s∈{1,2,…,n}; λ_r≠f(λ_r)または,μ_s≠f(μ_s)が言える。 従って, λ_r≠Σ_{k=0}^∞a_kλ_r^kまたは,μ_s≠Σ_{k=0}^∞a_kμ_s^k まで言えたのですが,ここからどうやって矛盾が引き出せますでしょうか?

  • 順列・数え上げ

    よろしくお願いします。 ここに下のような390個の文字があります。 (A,B,C,D,E,F,G,H,I,J,K,L,M がそれぞれ10個ずつ、 N,O,P,Q,R,S,T,U,V,W,X,Y,Z がそれぞれ20個ずつあります。) この390個の文字から235文字を選んで一列に並べる方法は全部で何通りありますか。 A B C D E F G H I J K L M A B C D E F G H I J K L M A B C D E F G H I J K L M A B C D E F G H I J K L M A B C D E F G H I J K L M A B C D E F G H I J K L M A B C D E F G H I J K L M A B C D E F G H I J K L M A B C D E F G H I J K L M A B C D E F G H I J K L M N O P Q R S T U V W X Y Z N O P Q R S T U V W X Y Z N O P Q R S T U V W X Y Z N O P Q R S T U V W X Y Z N O P Q R S T U V W X Y Z N O P Q R S T U V W X Y Z N O P Q R S T U V W X Y Z N O P Q R S T U V W X Y Z N O P Q R S T U V W X Y Z N O P Q R S T U V W X Y Z N O P Q R S T U V W X Y Z N O P Q R S T U V W X Y Z N O P Q R S T U V W X Y Z N O P Q R S T U V W X Y Z N O P Q R S T U V W X Y Z N O P Q R S T U V W X Y Z N O P Q R S T U V W X Y Z N O P Q R S T U V W X Y Z N O P Q R S T U V W X Y Z N O P Q R S T U V W X Y Z 以下、私が考えたことを書きます。 この390個の文字から235個の文字を選ぶ組み合わせの総数は、 (Σ[k=0~10]x^k)^13*(Σ[k=0~20]x^k)^13 を展開したときのx^235の係数ですから、 23463540513956137996043929988 通りだということは分かります。 この23463540513956137996043929988 通りのそれぞれについて235個の文字 の順列(同種のものを含む順列)を数え上げれば答えは出ると思いますが、これは あまりにも大変な作業です。 何かよい知恵はないでしょうか。

  • 数A 集合

    【問題】 A={12m+8n|m∈Z、n∈Z}、B={4l|l∈Z}とする。 A=Bであることを示せ。 ただし、Z={整数全体} 私は A={12m+8n|m∈Z、n∈Z}  ={4(3m+2n)|m∈Z、n∈Z} ここで、3m+2n=lとおくと、A={4l|l∈Z}=B よって、A=Bが成り立つ としたのですが、解答では *-*-*-*-* x∈Aならば、ある整数m、nについて、  x=12m+8n=4(3m+2n)とあらわせる。 ここで、3m+2nが整数より、x∈Bが成り立つ。 したがって、A⊂B・・・(1) また、x∈Bならば、ある整数lについて、  x=4l=4(3-2)l      =12l+8・(-l)と表せる。 ここで、m=l、n=-lとおくと、m、nは整数で、x=12m+8nと表せるから、x∈A したがって、B⊂A・・・(2) (1)、(2)より、A=B *-*-*-*-* となっていました。 やはり、x∈A⇒x∈Bとx∈B⇒x∈Aを示し、必要十分性を確かめる解答にしなくてはいけないのでしょうか? やはり私の解答では証明したことにはならないのでしょうか?

  • 整数に関する証明

    有理数体Qの元で,Qの部分環Z上整なものはZの元であることは知っていましたが、証明できずに困っています。 頭がよければ中学生でも理解できそうなことで躓いてしまい、恥ずかしいけど質問します。 s/t∈Q(s, t は互いに素な整数)がZ[x]に含まれるモニック多項式, f(x) = x^n + (a_1)x^(n-1) + ・・・ + a_n の零点とする。 f(s/t) = (s/t)^n + (a_1)(s/t)^(n-1) + ・・・ + a_n = 0 s, t が互いに素なのを利用して t = ±1を証明すればいいのですが、その証明ができません。 初等整数論以前の初歩的質問ですが、アドバイスをお願いします。

  • 集合と位相の教科書

    以下のような問題を解けるようになりたいです。できるだけやさしい教科書、参考書、問題集を教えてください。問題集は解説が詳しいものがいいです。 1.集合X,Yと、Xの部分集合A,Yの部分集合Bについて次の等式を証明せよ X×YーA×B=[(X-A)×Y]∪[X×(Y-B)] 2.デデキンドの切断を用いて 2および√5を切断をもちいて表せ 2<√5を切断をもちいて証明せよ 3.sorgenfrey直線Sのなかの2つの部分集合A,Bについてnot(A∩B)≠notA∩notBとなるようなA,Bの例をあげ、その理由を説明せよ 4.命題p_nを-nより小さい、命題q_nをnより大きいとさだめ、Rの部分集合An={x∈R:(p_n∨q_n)(x)が真}とおくとき、 ∪{An:n∈N} ∩{An:n∈N} をもとめよ 5.{a_n}^∞_(n=1)をQのなかのコーシー列とする。bn=a_n+1/2n(n=1,2,...)とおくとき {bn}^∞_(n=1)はQのなかのコーシー列であることを証明せよ {a_n}^∞_(n=1)~{bn}^∞_(n=1)(同値)であることを証明せよ