• ベストアンサー

輪切りにした球の体積の求め方

半径rの球体を、中心からr/2の点を通るように輪切りにした時の、小さい部分の体積の求め方を教えてください。 きっと、中学校の数学のレベルですよね。 中学校をはるか昔に卒業した頭では「ワケワカラン」状態です。

質問者が選んだベストアンサー

  • ベストアンサー
  • info22
  • ベストアンサー率55% (2225/4034)
回答No.2

V=π∫[r/2,r] {(r^2)-(x^2)}dx=(5/24)π(r^3) という回転体の体積の積分公式で体積Vを求めます。 でも結果を公式として使えば中学生でも体積が計算できます。 V=(5/24)π(r^3) rは球の半径、πは円周率(3.14159…)です。

guppie
質問者

お礼

ありがとうございます! 積分で求めるのはわかっていました。。。 しかし、高校で微積分を勉強したものの(しかも数学IIIもとっていた)、 さすがに、卒業以来20年以上も微積分を使わなかったので、 もうお手上げ状態でした。

その他の回答 (1)

  • kmasacity
  • ベストアンサー率50% (8/16)
回答No.1

おそらく「積分」などはご存知で無いでしょうか?「積分」を使ってこの体積を求めるやり方はいろんなサイトで説明していると思いますが・・・

関連するQ&A

  • 球の体積について

    球の体積ついて 中一男子です。 数学で球の体積の求めかたをやりました。 今から、書きます。 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 球が丁度入る円柱の容器と、その球を半分にした半球の容器があります。 円柱の容器には半球の何倍分の水が入るでしょうか? 上のことを調べてみると、円柱の容器の水の量は半球の容器の3倍分であることが分かる。 すなわち、半球の体積は円柱の「三分の一」である。 このことから、球の体積について、次のことが分かる。 球の体積は、その球が丁度はいる円柱の体積の「三分の二」である。 半径「rcm」の球が丁度入る円柱は、底辺の半径が「rcm」で高さが「2rcm」であるから、 その体積は「πr(2条)×2rcm」となる。 πr(2条)×2r=π×r×r×2×r=「2πr(3条)」 と、計算できるから、半径「rcm」の球の体積「V立方cm」は、次のように表される。 V=「2πr(3条)」×「三分の二」=「三分の四πr(3条)」 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ はい、終わりました。 そして、授業で先生がこのことを説明したあと、こんなことを言いました。 「最初の、 (球が丁度入る円柱の容器と、その球を半分にした半球の容器があります。 円柱の容器には半球の何倍分の水が入るでしょうか?) の部分は、実験じゃないですか。でも、この説明は計算でもできるんですよ。 まあ、難しいので説明しないけど。皆さん、もう少し、勉強してから調べてみてください」 と、なんとなく期待しているような気がしました。 そこで、僕は知りたいです。計算だけの方法を。 中一の脳なので、理解できないところもあるかもしれません。 しかし、それも頑張って理解したいです。 どれだけ難しくてもいいです。複雑でもいいです。 文が下手なので、質問があるかたは書いてください。 御回答お願いします。

  • 球と円柱の共通部分の体積

    「原点を中心とする半径Rの球x^2+y^2+z^2=R^2と半径R/2の円柱x^2+y^2≦Rxの共通部分の体積を求めよ。」 この問題ののアプローチが分かりません。 どういう状態なのかをイメージすることができますが、具体的に計算で体積を求めるにはどういった解法を用いるのか、ひらめきません。 分かる方、指南よろしくお願いいたします。

  • 体積の求め方なのですが

    半径Rの球と半径aの球があり、それぞれ球1、球2とします。(R>>a) 球2の中心は球1の表面上にあります。(ひょうたんのような形です) このときに球2の球1からはみ出している部分の体積はどうやって求めればいいのでしょうか?

  • 球の中心と半径の求め方

    カテゴリーでは数学部門だと思うのですが… 現在、ある球体を測定してその物の球の中心と半径を求めようと思っています。 球体の表面をある機械で測定しています。それぞれの機械から計測された3次元の形状データとしては10000点ほど有ります。 そこで、4点をピックアップして球の公式に入れて求めると、全てがかなりばらつきのあるデータが出てきます。 これではどのあたりに球の中心があり半径がどうなのか分かりません。 できれば、統計的、数学的に中心と半径は信頼度が高く求める方法があれば教えて下さい。 ちなみに、4点からのデータから中心と半径を100回求め、平均してもばらつきがひどくてこの方法は使わないようにしています。 そこで、10点をピックアップして、最小二乗法から中心と半径を100回求め、平均する方法をしたりしました。 まだ、この方法が有用かなと思いましたが… データのばらつきが少ないからいいのかなと思いました。 大変理解していただくには難しい内容かもしれません。随時、応えさせていただきますので、色々なご意見宜しくお願いいたします。

  • 球Oが通過する部分の体積

    「1辺の長さが5の正三角形ABCと半径rの球Oがあります。球Oの中心がABCの周上を一周する時、球Oが通過する部分の体積を求めなさい。ただし0<r≦1」 という問題の解法をお願いします。 とある試験の過去問なのですが、解説が省略されてて分かりません。 答えは (49πr^3)/3 -4(√3)r^3 となっています。よろしくお願いします

  • 球を任意の平面で切ったときの体積

    質問させてください。 半径:r の球があり、 それを任意の平面で切ったとき、 底面(切り口)からの高さをHとします。 その切り取られた部分の体積Vを求める公式が、 V=(π/3)×H^2×(3r-H) となっていました。 公式をみてもなぜそうなるかが全くわかりません。 わかる方おられましたらぜひご教授ください。 宜しくお願いします。

  • 球の体積と表面積を表示するプログラム

    高校生です。 学校であった問題なのですがいまいち理解できません。 いまのところ習ったものはprintf関数とscanf関数のみです。 問題を書くので誰かご教授ねがえませんでしょうか? Q.半径をキーボードから入力し球の体積と表面積を表示するプログラムを作成しなさい。なお、入力は整数値で行い、面積は実数値で表示するものとする。 公式 球の体積=4/3πr3(三乗です。)    球の表面積=4πr2(二乗です。)    r:球の半径 π:円周率(プログラム上では3.14を用いる) お願いします。

  • 球の慣性モーメント

    半径aの球で、中心から半径rまでの密度がp、それより外側の密度がqの球体の直径周りの慣性モーメントはどうなりますか?

  • 球の体積と表面積。答えが間違ってると思うのです・・

    問。 立方体Aに内接する球Kと外接する球Lがある。 (3)KとLの体積の比を求めよ。 答え。 1:3√3 (1)がAとKの表面積の比、(2)はAとKの体積の比です。 この(3)だけ答えを間違えました。 私の回答は、1:2√2です。 解き方としては、Kの半径をx、球K、Lの中心をOとします。 Oから立方体Aの頂点に引いた直線は球Lの半径になり、 またその直線は、立方体Aに内接する球Kの半径から√2xと分かります。 (直線と内接円の半径から、45°、45°、90°の二等辺三角形が出来るため。) 従って球Lの半径は√2xです。 球の体積の公式から、V=(4/3)πr^3なので、 それぞれ、(4/3π)x^3、(8√2/3)πx^3となりました。 なので体積比は、1:2√2となったのです。 この問題集には詳しい解説が載っておらず、回答と解法の一部が載ってるだけです。 その解法の一部ですが、 「立方体Aの1辺の長さをaとすると、球K、球Lの半径はそれぞれ、a/2、√3a/2」 とありました。 どうして回答を間違えたのか、分かりません。 また、解説の球Lの半径が√3a/2となるのも分からないのです。 この二等辺三角形から、1:1:√2が成り立ち、立方体の1辺をaとするなら、 球Lの半径は√2a/2になると思います。 お手数ですが、ご意見。・ご回答お願いします。

  • 放物線の回転体の体積

    お世話になってます。 数学図形の問題ですが、 放物線y=x2+1(エックス2乗プラス1)とx軸に平行な直線 y=5との交点で囲まれた部分をy軸を中心に回転してできる 立体の体積を求めたいです。(図添付) ―――――――――――――――――――― 自分の考え】 自分の考えは放物線の回転なので半球にはなりませんよね。 上面の円の半径は2しかし高さは4の球体?(このような形の立体を 何と呼ぶのか正確にわかりません) 半球なら中学レベルでしょうがこの場合の形は積分を使うのではないか?と思うのですが、積分は面積を求めるときには使うと思いますが、 このような立体ではどう考えてよいかわかりません。 自分の考え、予想はここまです。すみません。基本の積分の計算わできると思いますので考え方と使い方がわかるとありがたいです。 どうかよろしくお願いいたします。