• ベストアンサー

2つの単振動の組み合わせ

x=acos(ωt) y=bcos(ωt+φ) でφ=π/4としたときに、点(x,y)は右回りの斜めの楕円運動、 φ=-π/4のときは左回りの斜めの楕円運動をするということを 示したい。 http://www.ne.jp/asahi/tokyo/nkgw/gakusyu/rikigaku/Lissajous/Lissajous.html 楕円運動をすることまではOKなのですが、どっちむきに回るのかを知るにはどうしたらいいのでしょうか。

質問者が選んだベストアンサー

  • ベストアンサー
  • info22
  • ベストアンサー率55% (2225/4034)
回答No.1

どちらに回転するかは位相の±で決まります。 x=acos(ωt)を基準にすると xはt=0から時間の経過とともに 位相ωtは0→π/4→π/2→3π/4→π→5π/4→3π/2→7π/4→2π と変化すると 振幅がa→a/√2→0→-a/√2→-a→-a/√2→0→a/√2→a (あとはこの繰り返し) このときy=bcos(ωt+π/4)の位相は π/4だけxより位相が進んでいますので yの位相(ωt+π/4)は π/4→π/2→3π/4→π→5π/4→3π/2→7π/4→2π→2π+π/4 となりyの振幅は b/√2→0→-b/√2→-b→-b/√2→0→b/√2→b→b/√2 と変化し「yの最大振幅が行過ぎた、振幅が減少した所からスタート」して yの振幅が変化します。 これが点が右回り(時計の針が回る方向)になる原因になります。 一方、 y=bcos(ωt-π/4) の場合はωtが0から増加するとき yの位相がωt=π/4となるときまではyの振幅が増加して最大値になります。つまり、xの位相に対してyの位相が(π/4)だけ遅れていますので yの最大値はxの最大値(t=0のとき)より遅れてやってきます。 つまり「yの最大振幅がxの最大振幅より遅れてやってきますので、yの振幅が増加する所からスタート」してyの振幅が変化します。 このため、点の運動は左周り(時計の針が回る方向と反対方向)になる原因になります。 お分かりでしょうか? xに対してyの位相の遅れや進みがxの振幅ピークに対してyの振幅ピークがそれぞれ、後からやってくる、すでに通り過ぎている差になって現れるため、点(x,y)の回転方向がそれぞれ左回転、右回転の違いになって現れるのです。

msndance
質問者

お礼

あわてず値をプロットしていけばよかったのですね・・・。 何度の回転行列をかけたら、 x'=acosωt y'=bsinωt の形にもっていけるのだろう、と悩んでいたのですが・・・ ありがとうございました。

関連するQ&A

  • 楕円振動の問題です

    定点からの距離に比例する引力を受け一平面内を動く質点の運動を、直交座標を用いて調べよ。その軌道は定点を中心とする楕円になることを示せ。 とゆう問題ですが、そのまんま運動方程式からx=Acos(wt+a) y=Bcos(wt+b)なんですが、これがなんで楕円になるのか分かりません。詳しい方教えてください。

  • 平面波の式を楕円の方程式に変形する方法

    Ex=Acos(ωt+φx) Ey=Bcos(ωt+φy) (Ex、Eyは電界、φx、φyは位相、位相差をφ=φy-φxとする) この式を変形して楕円の方程式が得られることを証明するのが目標です。 φx=0の場合は加法定理で展開して Ex=Acosωtcosφx-Asinωtsinφx=Acosωt…(1) Ey=Bcosωtcosφy-Bsinωtsinφy…(2) (2)に(1)を代入して変形していき、 (Ex/A)^2-2ExEycosφy/AB+(Ey/B)^2=(sinφy)^2 と、楕円の方程式にできたのですが、 φxがあるとうまくωtを消すことが出来ません。 そこで質問です。 φx=0とした場合、φ=φy-0でつまりφ=φyとなるので、 このφx=0とした場合の楕円の方程式のφyをφに代えてφ=φy-φx…(φx≠0)の場合の楕円の方程式とすることはできないでしょうか。 やはりこれでは証明にはならないでしょうか。 ならないようなら式変形のヒントを頂けるとありがたいです。

  • 楕円の式変形

    x=acos(ωt+α1) y=bcos(ωt+α2) この2式をωtに依存しない形に変形し、楕円の式にしたいのですが、導くことができません。 三角関数の公式を使うわけでもないですし、既存の楕円の式に当てはめてもα1、α2が邪魔でうまくいきません・・・。 回答お願いします。

  • 単振動の解

    自然の長さl, ばね定数k のばねの下端に質量mの質点をつるす。上端を鉛直方向に動かし、変位がacosωtとなる振動を与える。運動方程式の解を求めよ。ただし、ω≠√(k/m) とする。 という問題で、鉛直方向に動かしている時の質点の自然長からの変位をxとすると、 mx''=-kx + mg となるので 解は、 x=Acos(ω0t+α) + mg/k だと思ったのですが、 答えは x=Acos(ω0t+α) +{aω0^2cosωt/(ω0^2 - ω^2)} + l + (mg/k) となっていました。 変位を acosωt にするということが関係すると思うのですが、どう扱えば良いのかよく分かりません。 なぜこうなるのでしょうか?

  • 単振動する単振り子

    追試に出る問題なんですが、1つ全くわからない問題がありました… 問題全文は「支点が水平にy0=Acosωtと単振動する単振り子の運動をラグランジュの運動方程式で扱え。」で、これより簡単バージョンの「単振り子の運動をラグランジュの運動方程式で扱え。」だと、単に運動エネルギー・位置エネルギー、ラグランジュの運動方程式を適用するだけで解けたのですが[ θ``=-(g/l)sinθ ]、この問題だけが解けなくてショボンとしてます… 単振動する単振り子って… 運動エネルギーがわかりません

  • 物理 単振動

    ばね定数kのばねに質量mの小球をつけ、水平で滑らかな床の上に置き、ばねの他端を固定した。小球は質点とする。次に小球を手でつかみ、ばねを伸ばして手を離したところ、小球は単振動した。ばねの長さに沿った方向をx軸として振動の中心を原点とする。このとき、小球の運動方程式はm((d^2x)/(dt^2))=ーkxと書ける。小球の変位はこの運動方程式の解として与えられx=Asinωt+Bcosωtと書ける。ただし、ωは角振動数であり、A,Bは初期条件で決定される定数とする。 (1)運動方程式よりx=Asinωt+Bcosωtを導出せよ。 (2)解を運動方程式に代入するとωをmとkで表すことができる。その式を求めよ。 (3)小球は時刻t=0のとき、原点x=0を速度voで通過した。この時の、AとBを求めよ。 (4)ばね定数kおよびばね定数2kのばねを小球の両側に一直線となるようにつけ、それぞれのばねが自然の長さとなった状態で固定した。次に小球を手でつかみ、ばねの長さに沿って移動させて手を離したところ、小球は単振動した。ばねの長さに沿った方向をx軸として、振動の中心を原点とする。このときの運動方程式を求めよ。 特に(3),(4)がわかりません。(1)~(4)どれでも構いませんので回答よろしくお願いします。 もちろん、(1)~(4)を教えてくださると大変助かります。 よろしくお願いします。

  • 一次元ハミルトン系の位相空間

    一次元ハミルトン系:H=m*ω^2*x^2/2+y^2/(2*m) の位相空間は楕円を描きますが、時間変化の向きは右回り左回りのどちら向きで、なぜそうなるのか教えてください。

  • 物理の問題

    平面上で運動する質点の座標のx,y成分が、x=Asinωt,y=Bcosωtであるとき、t=0における質点の速度及び加速度を求めたいのですがどのように解いたらいいのか解りません。 自分では、上式を変形したら、軌道の式が楕円になることは解ったのですがこの先が解りません。どなたかご存知の方よろしくお願いします。

  • 波動と振動

    物理の振動と波動の問題でわからなく困っているので質問します。 解説も答えもないのでお願いします(__ 問1 平面上で運動する質点の座標のx,y成分がそれぞれx=Asinωt、y=Bcosωtであるとき (1)リサージュの方法により、軌道の形を簡単に作図せよ。 (2)軌道の式を求めよ。 (3)t=0における質点の速度および加速度を大きさと方向を明確に求めよ。 問2 振幅A、波長λの正弦波状の波動が、x軸上を速さvで進んでいる。時刻t=0における原点での変位がy=oであるとして、この波の変位の式を示せ。またこの波の波動方程式を書きなさい。 ...です。 たぶん高校の知識で解けそうな問題ですが、化学で入ったもんで全然わからないです^^; お願いします(__

  • いろいろな曲線

    1.2定点(±c,0)からの距離の和が一定値2a(a>c)である点の軌跡が、円の標準形で表されることを確かめなさい。 sqrt((x-c)^2+y^2)+sqrt((x+c)^2+y^2)=2a ここで(x-c)^2+y^2+(x+c)^2+y^2=2(x^2+y^2+c^2)を使い (X+Y)^2+(X-Y)^2=2X^2+2Y^2により |sqrt((x-c)^2+y^2)-sqrt((x+c)^2+y^2)|=sqrt(4(x^2+y^2+c^2-a^2) ←この変形が理解できません。 2.楕円x^2/a^2+y^2/b^2=1の周上Pでの接線は、焦点F、F'と結ぶ角FPF'の外角をニ等分することを証明しなさい。 楕円x^2/a^2+y^2/b^2=1楕円の周上の点を媒介変数表示x=acosθ,y=bsinθで表すと、接線の傾きは-bcosθ/acosθ 焦点を結ぶ直線の傾きはそれぞれbsinθ/(acosθ-c),bsinθ/(acosθ+c)(c=sqrt(a^2-b^2))これと接線とのなす角の正接は、前者が(absin^2θ+bcosθ(acosθ-c))/(asinθ(acosθ-c)-b^2sinθcosθ) ←この式が導出できません。 3.楕円x^2/a^2+y^2/b^2=1(a>b>0)の外部の一点Pから楕円に引いた2本の接線が直交するような性質をもつ点Pの軌跡を求めなさい。 楕円上の2点s(acosθ,bsinθ),(acosφ,bsinφ)での接線が直交するとすると a^2sinθsinφ+b^2cosθcosφ=0 両接点の交点の座標は x=a(sinφ-sinθ)/(cosθsinφ-sinθcosφ) y=b(cosθ-cosφ)/(cosθsinφ-sinθcosφ) x^2+y^2=[a^2(sin^2θ+sin^2φ)+b^2(cos^2θ+cos^2φ)]÷(cos^2θsin^2φ+sin^2θcos^2φ-2sinθcosθsinφcosφ) 分子の-2a^2sinθsinφ-2b^2cosθcosφは直交条件によって0になる。 分母の(a^2+b^2)倍を分子から引くと ←どうしてそうするのかわかりません。  2a^2sin^2θsin^2φ+2b^2cos^2θcos^2φ+2(a^2+b^2)(sinθcosθsinφcosφ) ←導出できず。 =2(sinθsinφ+cosθcosφ)(a^2sinθsinφ+b^2cosθcosφ)=0であり、 x^2+y^2=a^2+b^2 ←導出できず。 となる。 多くて恐縮ですがご教示いただければと思います。