• ベストアンサー

微分を絡めた数学的帰納法の問題

y=x^nのn次関数を求めよ。 という問題で、数学的帰納法を使い、n=1のときは理解できましたが、k+1のときの証明が理解できません。この問題の途中に出てきた式で y^(k+1)微分=d^k*(dx^(k+1)/dx)/dx^k という式を理解できません。yをk+1回微分したものなのになんでこうなるのでしょうか。これではk+2回微分した式になっている気がしてしまいます。 どなたか教えてください。よろしくお願いいたします。

質問者が選んだベストアンサー

  • ベストアンサー
  • saimonia
  • ベストアンサー率61% (19/31)
回答No.1

まずyの(k+1)次導関数はx^(k+1)を(k+1)回微分するということというのはよろしいでしょうか。 ここで x^(k+1)を(k+1)回微分する→x^(k+1)を1回微分した結果をk回微分する としても同じですよね。 x^(k+1)を1回微分する部分を式にするとdx^(k+1)/dxですよね x^(k+1)を1回微分した結果がdx^(k+1)/dxなのでこれをk回微分したらいいわけですから、これを式にすると d^k*(dx^(k+1)/dx)/dx^k になりますよね。 分かりにくければ、f(x)=dx^(k+1)/dxとおいたら d^k*f(x)/dx^k となります。これはf(x)をk回微分するという式ですよね。 以上からd^k*(dx^(k+1)/dx)/dx^kはyの(k+1)次導関数になります。

その他の回答 (3)

回答No.4

mis_take様 zk43様 saimonia様 この問題は (x)^(k+1)の微分が(k+1)*(x)^kになる事は使用可なのでしょうか。 質問者ではない私が質問して良いのかどうか(規約違反)は知らないのですが。 もしかしてdandy_lion様も悩んでいるかも・・・と・・・かってな事を書きつつ。 もし使用可なら 単に、高次微分記号/微分作用素の理解の問題に帰着し 本来の題意は普通の言葉で説明可なので・・・ となると 説明が難解で ・・・本来の題意とは離れてしまっている・・・ 正直 結構長時間 思考しているのですが (k+1)*(x)^kになる事を使わない証明を思いつきません。 とてつもなく、トンチンカンな事を訊いているようなきもして、恥ずかしいのですが。

dandy_lion
質問者

お礼

レベルが高すぎて理解できません。

  • mis_take
  • ベストアンサー率35% (27/76)
回答No.3

証明したいことが何かきちんと把握していますか? (x^n)^(n)=n! ですね。 ですから,数学的帰納法の第2ステップでは (x^k)^(k)=k! を仮定して,(x^{k+1})^(k+1)=(k+1)! を示します。 (y=x^n を k+1回微分するのではありません。) (k+1回微分とk+1乗を区別するために ^(k+1) と ^{k+1} を使い分けています。) ヒント (x^4)''''=(4x^3)'''=4(x^3)'''=4・3!=4!

dandy_lion
質問者

お礼

ありがとうございます。

  • zk43
  • ベストアンサー率53% (253/470)
回答No.2

dx^(k+1)/dxはx^(k+1)にd/dxを1回だけ作用させている。 d^k*(dx^(k+1)/dx)/dx^kは、dx^(k+1)/dxにd^k/dx^kを作用させてい る。つまり、d/dxをk回作用させている。 よって、d^k*(dx^(k+1)/dx)/dx^kはx^(k+1)にd/dxを合計k+1回作用 させている。d/dxを作用させるということは、1回微分を行うというこ と。 d/dxの記号に慣れてなかったら、’を使ったり、簡単にDで微分を意味 するとして、記号を簡略化して考えても良いのでは。

dandy_lion
質問者

お礼

no1,no2さんどうもありがとうございました。理解できました。感謝しています。

関連するQ&A

  • 【数学B】数学的帰納法 発展問題

    まず、問題を書きます。 /////////////////////////////////////////// 問 nは自然数とする。数学的帰納法によって、次の不等式を証明せよ。 1) 1^2+2^2+3^2+・・・・・・+n^2<(n+1)^3/3 /////////////////////////////////////////// 見にくいですが。 解答を見てみたのですが、何か僕にとって大事なところが抜けていて、何言ってるかわかりませんでした。 帰納法で i)n=1のとき ii)n=kのとき で考えるところまでは分かりますが、n=kでnにkを代入した式を仮定するまでしか駄目でした。 この数学的帰納法の証明方法はいくつかあると思いますが、 一番、簡潔で分かりやすく証明できる方法を教えてください。 お願いします。

  • 数学的帰納法の不等式の問題です

    数学的帰納法の不等式の問題です。 nは自然数とする。不等式 2n が成り立つことを、数学的帰納法を用いて証明せよ n=1のときはわかるのですが、n=kのとき成り立つと仮定してn=k+1のときに成り立つことを証明する解き方がわかりません。 教えてください!

  • 数学的帰納法の問題

    nが2以上の自然数のとき、不等式1+1/2+1/3+…+1/n>2n/n+1が 成り立つことを数学的帰納法で証明せよ という問題なのですが、 n=k+1のとき、1+1/2+…+1/k+1/k+1>2k/k+1+1/k+1                           =2k+1/k+1 までは分かるのですがその次の ここで 2k+1/k+1-2(k+1)/k+2 からが分かりません。 何でこの式になるのかを教えてほしいです(-_-;) よろしくお願いしますm(__)m

  • 数学的帰納法でこの問題に詰まっています

    連続したk個の整数の積はk!で割り切れることを数学的帰納法で証明せよ。 という問題です。数学的帰納法というからには、nやn+1を使うのだと思うのですがよくわかりません。どなたか解法と解答をお願いします。

  • この数学的帰納法を用いた証明問題がわかりません。

    この数学的帰納法を用いた証明問題がわかりません。 (2)n 回微分可能な関数f(x) のn 次導関数をf^(n)(x) で表しf^(0)(x) = f(x) と定 義するとき,次の公式(P) が成立する.以下の問(a), (b) に答えなさい. (P)d^n/dx^n ( e^xf(x) ) =Σ(r=0からn)t(n r)e^xf^(r)(x) ( n ≧ 1, t(n r)=n!/( r!(n - r)! ) ) (a) g(x) = x^2e^x のn 次導関数g^(n)(x) を求めなさい. (b) 数学的帰納法を用いて公式(P) を証明しなさい.ただし,必要であれ ば次の性質を用いてよい. t(n ,r - 1)+t(n,r)=t(n + 1,r) (r ≧ 1; n ≧ r) -------------------------------------------------------------- 画像が見づらくて申し訳ありません。 (a)はh(x)=x^2と置くと、 g^(n)=d^n/dx^n( e^xh(x) )=Σ(rからn)e^x h^(r) (x) これで合っていますか? (b)は n=1のときは明らかに成り立つ。 n=k(kは自然数)のとき成り立つと仮定し、n=k+1のときの式変形がどうもうまくいきません。 (n≧3のときh^(n)=0であるのはわかります。) どなたか解説をよろしくお願いします。

  • 数学的帰納法

    今高校で数学的帰納法をやっているんですが、模範解答を見ても解き方がわからない問題があります。 お力貸してください。 nを自然数とするとき、数学的帰納法によって次の等式を証明せよ。   (n+1)(n+2)(n+3)……(2n)=2のn乗×1×3×5×……×(2n-1)  模範解答・・・ [1]n=1のとき、左辺=1+1=2、右辺=2 より成り立つ。          [2]n=kのとき与式が成り立つと仮定すると、    (k+1)(k+2)(k+3)……(k+k)=2のn乗×1×3×5×……×(2k-1)  ------------------------------------------------------------   ここまでは分かります。以下がわかりません。  この両辺に〔(k+1)+k〕〔(K+1)+(K+1)〕を乗じると、(なんでここでこれを乗じるんですか??) 左辺=(K+1)(K+2)(K+3)…(K+K)〔(K+1)+k〕〔(K+1)+(K+1)〕    (以下こんな感じです) 右辺=・・・・・ k+1≠0より左辺と右辺を(K+1)で割ると、これはn=k+1のときにも与式が成り立つことを示している  [1][2]よりすべての自然数nに対し与式は成り立つ。  途中からがよくわかりません。分かる方いらしたら教えてください。

  • 数学的帰納法の問題

    数学的帰納法を用いて以下の不等式を証明する問題で、n=k+1のときの証明でk(2k+1)/2+√(2k+1)(2k+2)と(k+1){2(k+1)+1}/2の大小を比較するのはなぜですか? √1・2+√3・4+・・・+√(2n−1)・2n<n(2n+1)/2

  • 数学的帰納法について

    数学的帰納法について質問があります。 数学的帰納法の問題で http://www.geisya.or.jp/~mwm48961/kou2/inductive_method3.htm のnが〇以上(〇には具体的な数値が入ります)のとき 証明せよ の問題の解き方は理解できるのですが考え方に不明な点があります。 __________________________________________________ 数学的帰納法は (I) n=1 のとき(A)が成り立つことを証明する. (II) n=k のとき(A)が成り立つことを仮定する. その仮定を使って n=k+1 のとき(A)が成り立つことを証明する. __________________________________________________ とのことですがkは任意に自然数として理解をしていましたがこの考え方をすると、 nが〇以上の時について証明せよ。において (I) n=〇のとき(A)が成り立つことを証明する. (II) n=kのとき(k>=〇)(A)が成り立つことを仮定する の(k>=〇)の条件を書く必要があるのかがわかりません。 すなわち、 私が考えているのは、 (I) n=〇のとき証明できたのだから (II) n=kのとき(k>=〇)ではなくn=kのとき(k>=〇+1) と何故書かないのかということに疑問があります。 そのため、 すべての自然数 n について,次の不等式が成り立つことを証明せよ. の問題では、 (I) n=1 のとき(A)が成り立つことを証明する. (II) n=k のとき(k>=1)(A)が成り立つことを仮定する. と書かないのか という内容に混乱をしています。 これについて先生に尋ねてみたら すべての自然数において問題は自然数1から必ず行うものだから (k>=1)というのは暗黙の了解である。 だから、書かなくていい といわれました。 この考え方にあまり納得いかないので、わかりやすく解説をしてください。

  • 数学的帰納法って?証明をして下さい!

     次の問題を、どなたか解いて頂けないでしょうか? nは自然数とする。このとき、次式が成立することを数学的帰納法を用いて証明せよ。 1×3+2×4+3×5…+n(n+2)=1/6n(n+1)(2n+7)…命題A  nが1のときに成り立つことは証明できました。n=kのときに命題Aが成り立つと仮定すると、1×3+2×4+3×5…+k(k+2)=1/6k(k+1)(2k+7)…(1)である。n=k+1のとき命題Aの左辺は(1)を用いて、命題Aの左辺=…以下の証明が出来ません。  数学的帰納法について、あまり理解してません。出来れば解説を加えて頂きたいです。よろしくお願いします!(1/6は、6分の1のことです。)

  • 数学的帰納法について

    (1+2+・・・+n)^2 = 1^3 + 2^3 + ・・・ + n^3 を数学的帰納法で証明するのですが、 n=1のとき、 1=1で左辺=右辺。 n=kで成り立つとしたとき、  n=k+1のとき、左辺 - (1+2+・・・+k)^2 = k^3 = (k+1)^3 を求めてみようとしたのですが、 式変形がうまくいきません。 どうかご教授願います。