• ベストアンサー

数列(漸化式)

正の数からなる数列{a[n]}が、次の条件A,Bを満たすとき Σ[k=1,n]a[k]の値を求めよ。 A a[1]=1, B log a[n]-log a[n-1]=log(n-1)-log(n+1) (n≧2) という問題です。底のeは省略し、アルファベットが重なる場合はスペースをあけています。 log{a[n]/a[n-1]}=log{(n-1)/(n+1)} ∴ a[n]/a[n-1]=(n-1)/(n+1) a[n-1](n-1)=a[n](n+1) 両辺を(n+1)(n-1)で割ると a[n-1]/(n+1)=a[n]/(n-1) で止まりました。和を出すためにはまずa[n]が必要なので何度かやって みましたが、a[n]に辿りつけません。 どなたか教えてください。 ちなみに京都大学の入試問題です。

  • shaq
  • お礼率91% (56/61)

質問者が選んだベストアンサー

  • ベストアンサー
  • zk43
  • ベストアンサー率53% (253/470)
回答No.3

あるいは、ここまで変形しなくても log a[n]-log a[n-1]={log(n-1)-log(n)}+{log(n)-log(n+1)} とlog(n)を挿入して、2からnまで足してやれば、 log a[n]-log a[1]=log 1-log n+log 2-log(n+1) log a[n]=log(2/(n(n+1)) a[n]=2/n(n+1)=2/n-2/(n+1) となって、a[n]の和も簡単に計算できる。 Σ[k=1,n]a[k]=2-2/(n+1) (答えあってる?) ともかく、差が2離れているときは、差が1になるようなものを 挿入するというアイデア。

shaq
質問者

お礼

回答ありがとうございます。 変形しなくても良いんですね。 対数を見ると何も考えず、対数の性質を使って方程式に持ち込んでしまいます。これからは方針を立ててから変形をするかどうかを決めたいと思います。

その他の回答 (2)

  • zk43
  • ベストアンサー率53% (253/470)
回答No.2

a[n-1](n-1)=a[n](n+1) の両辺にnをかけると、 a[n-1](n-1)n=a[n]n(n+1) となって、nが1つずれた形になるので、a[n]がでるのでは?

shaq
質問者

お礼

回答ありがとうござます。 ・・・私にはこの式から求められそうにありません。

  • pocopeco
  • ベストアンサー率19% (139/697)
回答No.1

a[n]/a[n-1]=(n-1)/(n+1) を利用して、 a2=a1*1/3 a3=a2*2/4=a1*1*2/(3*4) と順番にやっていくと、 an=a1*(n-1)!/(n+1)!=a1/(n(n+1)) という法則に気づきませんか? an=a1*(1/n-1/(n+1)) なので、1~nまで足していくと、 a1*(1-1/(n+1))=a1*n/(n+1)

shaq
質問者

お礼

回答ありがとうございました。 今までの問題は式変形だけで何とかなったので、類推することは ありませんでした。行き詰ったら、順次代入して類推したいと思います。

関連するQ&A

  • 数列 (漸化式)

    A[1]=1 A[n+1]=4A[n]+2^n (n=1,2,・・・) {A[n]}の一般項を求めたいのですが 両辺2^nで割って、B[n]=A[n]/2^(n-1)とおくと、 B[n]+1=2(B[n]+1)とおけるから特性方程式より、B[n]が2^n -1と求められました その後はA[n]=・・・ どうすればいいのでしょうか? 等差数列なら A[1]+ΣB[k] k=1~(n-1)という感じで求められたのですが・・・ この数列は等差数列なのか、等比数列なのか・・・ 一見等差数列のようですが、+2^nがついていてこれも定数じゃないから、等差数列ともいえないな・・・と思いました。 階差数列?とはいえないかもしれないけど、B[n]が求まったらその後の段階としてどうすればいいのでしょうか、よろしくおねがいします。

  • 数列 漸化式

    A(n+1)=2A(n)+n (初項A(1)=1) という数列があるとします。 この一般項の形を求めるのに、この漸化式を満たす数列{B(n)}=αn+βを設定して、 この漸化式に代入、恒等式から{B(n)=-n-1}がわかります。 この{B(n)}の式が最初の漸化式を満たすわけですから、 A(n+1)=2A(n)+n B(n+1)=2B(n)+nの両辺を引いて A(n+1)-B(n+1)=2(A(n)-B(n))という等比数列が成り立つので、 A(n)=3*(2のn-1乗)-n-1   となると思うのですが、 ここから質問です。 なぜ最初の漸化式を満たした、B(n)=-n-1 と これまた漸化式を満たしている、A(n)=3*(2のn-1乗)-n-1 が異なっているのでしょうか? 回答お願いいたします。

  • 【漸化式と数列】

    数列{an}は次の2つの条件(A)、(B)をみたす。 (A)an>0(n=1、2、3) (B)Σ(k=1~n)ak^2={Σ(k=1~n)ak}^2 (1)a1、a2、a3を求めよ。 (2)a(n+1)^2=a(n+1)+2Σ(k=1~n)akが成り立つことを証明せよ。 (3)数列{an}の一般項を求めよ。 答え (1)a1=1、a2=2、a3=3 (3)an=n 証明問題もありますが… 解ける方がいらっしゃいましたら、 解説お願いしますm(__)m

  • 数列の漸化式の問題(解答)で二問わからない部分があります

    毎度毎度ありがたいほど詳しい回答ありがとうございます!!数IIにはいるとなんか難しいのが多くて こまります。またよくわからない式変形がでてきました・・・助けてほしいです。 (1)問目なんですが・・・ 1/1. 2/2. 3/2. 4/3. 5/3. 6/3. 7/4. 8/4. 9/4. 10/4. 11/5・・・・ の分数の列について 問:初項から第210項までの分数の和を求めなさい 回答の最初が・・・ 第210項の分母をnとすると分母がnである分数のうちで分子について最小のものは 1+2+・・・+(n-1)=1/2・n(n-1)+1=(n^2 -n+2)/2 最大のものは 1+2+・・・+n=1/2・n(n+1)=(n^2 +n)/2 これって分子の数列なんですよね・・・?? なんで数列の最後が分母のnを用いて n-1とかnなんでしょうか・・・わかりません。 _____________________________________________ (2)問目です。(a_1は数列anの第一項目という意味) a_1=1 a_n+1=(a_n -9)/(a_n -5) <n=1.2.3.・・> で定められる数列{a_n}がある。 問:b_n=1/(a_n -3)とおくとき b_n+1 をb_nであらわせ 解答が a_n+1 -3=(a_n -9)/(a_n -5)-3 から、a_n+1 -3=-2(a_n -3)/(a_n -5) 前の問題ではn≠3とでていたので この両辺の逆数をとると・・ 1/(a_n+1 -3)=-1/2・(a_n -3)/(a_n -5) =-1/2 + 1/(a_n-3) となっております。 なんで-1/2の掛け算がいきなり足し算になってるのでしょうか・・。色々思考してみましたが 納得がいきません。 もうすぐ塾でもテストなので至急アドバイス待ってます!!

  • 漸化式

    1、a(1)=1、a(2)=6、2(2n+3)a(n+1)=(n+1)a(n+2)+4(n+2)      (n=1,2,3…)で定義される数列{a(n)}について (1)b(n)=a(n+1)-2a(n)とおくとき、b(n)をnの式で表せ。 (2)a(n)をnの式で表せ。 (3)数列{a(n)}の初項から第n項までの和S(n)=a(1)+a(2)+……+a(n)を求めよ。   2、数列{a(n)}の初項a(1)から第n項までの和をS(n)と表す。この数列がa(1)=0、a(2)=1、(n-1)の2乗a(n)=S(n) (n≧1)を満たす時、一般項a(n)を求めよ。   *a,bのうしろの( )はその文字についてる小さいやつです。分かりにくい打ち方ですいません。 式も書いて教えて下さい。よろしくお願いします。

  • 漸化式を誰か教えてください

    今、漸化式の問題を解いているのですがどうしても分からない問題があるので教えてください。 問題は a(1)=(1/3),【3^(n-1)】a(n+1)=【3^n】a(n)+1(n=1,2,3,…)で定められる数列{a(n)}の初項から第n項までの和をS(n)とする。 このとき、lim【n→∞】S(n)の値は3/4で求めかたが分かりませんので、所々教えてください。 時間があるかた教えていただければ幸いです。 この問題を解くにはb(n)=【3^n】a(n)とすると漸化式が求められるそうなのですが (1) b(n+1)=b(n)+1になるのでしょうか? 【3^(n-1)】a(n+1)はb(n+1)になってしまうの? (2) b(1)=3*((1/3)=1になってしまうの? (3) b(n)=1+(n-1)*1=nの式はどこから現われたのか? (4) a(n)=【n/(3^n)】とSn=Σ(n,k=1) 【k/(3^k)】は何処から現れたのか? (5) S(n)-(1/3)*S(n)は何処から現われたのか? (6) ↑を計算すると(1/3)+(1/3^2)+…+(1/3^n)-【n/(3^(n+1)】 となりますが、どうしてΣ(n,k=1)【n/(3^(n+1)】となるのでしょうか? (7) (【(1/3)*{1-(1/3)n}】/【1-(1/3)】) -n/【3^(n+1)】は何処から現われたのでしょうか? ↑を計算すると(1/2)*【1-(1/3)n】-n/【3^(n+1)】となります。 S(n)=(3/4)*【【1-(1/3)n】】-(3/2)*n/【3^(n+1)】の形にどうしてなるのか分かりません。 (8) ↑の式は(1/3)nのnに∞を代入して0,【3^(n+1)】のnの部分に代入して0になって3/4となるのでしょうか?

  • 2数列の漸化式

    2つの数列 a(n+1)=a(n)+b(n) b(n+1)=a(n)*b(n) a(1)=1,b(1)=1 としたときの一般項の求め方が分かりません。 {a(n)}=1,2,3,5,11… {b(n)}=1,1,2,6,30… となっています。

  • 階差数列型漸化式

    階差数列型の a(n+1)-a(n)=b(n)のとき n≧2でa(n)=a(1)+Σ(n-1,k=1)b(k) の式を証明する途中式です。 言葉が足りなくてすいません。 a(n+1)-a(n)=b(n)のとき n=1のときa(2)-a(1)=b(1) n=2のときa(3)-a(2)=b(2) n=3のときa(4)-a(3)=b(3) …………………………………… n=1-1のときa(n)-a(n-1)=b(n-1) n=2 n=3 と増えてきているのに 最後の項はn=n-1となってしまうのですか?n=n+1のような気がするのですが。

  • 漸化式について。

    a_1=1, a_(n+1)=3a_n+4nで定められた数列{a_n}の一般項を求めよ。 という問題なんですが、解説を読んでも理解できません;; 解説には、b_n=a_n-(αn+β)とおいて、数列{b_n}が等比数列になるように、αとβを求め、一般項を出す、というやり方で書いてあります。 何故b_n=a_n-(αn+β)とおくのでしょうか?αn+βがどこから出てきたのか分かりません・・・。 また、{b_n}が等比数列になるようにαとβを求める、ということも理解できません。 何故、b_nは等比数列にならなければいけないのでしょうか? どなたか教えてください。お願いします。

  • 数IIBの数列の漸化式の問題です。

    数IIBの数列の漸化式の問題です。 本当に分からないので、基礎の知識から詳しく教えてもらえるとありがたいです・・・ 1. 数列1,1,4,1,4,9,1,4,9,16,1,4,9,16,25,・・・・・・がある。 この数列の第100項および初項から第100項までの和を求めよ。 2 数列1,2,3,・・・・・,nにおいて次の積の和を求めよ。 (1)異なる2つの項の積の和(n≧2) (2)互いに隣り合わない異なる2つの項の積の和(n≧3) 3 次の条件によって定められる数列{An}の一般項を求めよ。 (1)A1=1 An+1=9-2An (2)A1=1 An+1=4An+3 4 数列{An}の初項から第n項までの和SnがSn=n-Anであるとき、a1,a2,a3および{An}の一般項を求めよ。