• ベストアンサー

最大公約数の証明

gcd(n,a)=1かつgcd(n,b)=1ならばgcd(n,ab)=1をベズーの等式を用いて証明するっていう問題なのですが、 nx+ay=1 nu+bw=1 と書いて、最初の式にbを掛けたりしたんですが、どうやって証明すればいいのか全くわかりません。 わかる方、どうかお願いします。

  • qdoba
  • お礼率81% (9/11)

質問者が選んだベストアンサー

  • ベストアンサー
  • zk43
  • ベストアンサー率53% (253/470)
回答No.2

ベズーの等式って初耳なんですが、 一般にaX+bY=cが整数解を持つための必要十分条件がgcd(a,b)がcを 割り切ること、と考えてよいですか? とすると、nx+ay=1 nu+bw=1を辺々かけて、 (nx+ay)(nu+bw)=1 n^2xu+nxbu+aynu+aybw=1 n(nxu+xbu+ayu)+ab(yw)=1 これは、nX+abY=1が整数解X=nxu+xbu+ayu、Y=ywを持つことを意味する ので、 gcd(n,ab)が1を割り切る、すなわち、gcd(n,ab)=1 こんなんで良いのかな? 直感的に明らかな事実ですがね・・・素因数を考えれば。

qdoba
質問者

お礼

ありがとうございます! 理解することができました。 わかりやすく説明してくれてありがとうございます。両辺同士をかけるというのもやってみましたが、nとabでまとめるというのを思いつきませんでした。

その他の回答 (2)

  • koko_u
  • ベストアンサー率12% (14/116)
回答No.3

>直感的に明らかな事実ですがね・・・素因数を考えれば。 素因数分解の一意性を証明するのに質問の命題が必要になります。 数学的には素数 p が ab を割り切るときに p が a または b を割り切るとは即答できません。

  • guuman
  • ベストアンサー率30% (100/331)
回答No.1

n・x+a・y=1 n・u+b・w=y とできるから n・x+a・n・u+a・b・w=1 すなわち (x+a・u)・n+w・(a・b)=1 よってgcd(n,ab)=1

qdoba
質問者

お礼

ありがとうございます。 もしよろしければ >n・u+b・w=y の説明をお願いしてもいいでしょうか? お手数かけます、すみません。

関連するQ&A

  • 最大公約数の証明

    a,b>1の時、gcd(a,b)=dならばgcd(a^2,b^2)=d^2となるのを説明せよ。 っていう問題で、説明の仕方がわかりません。 aが例えば2*3=6で、bが2*3*3=18だとすれば公約数は2*3で、aとbを2乗すると2^2*3^2と2^2*3^4になって共通なのは公約数の2乗になるからって・・・説明にもなってないようなことしか思い浮かびません・・・。 よろしくおねがいします。

  • 最大公約数を求めたい!

    二つの数字の最大公約数を求めたいのですがどうしたらいいのかわからず困っています…。プログラムに関しては初心者なのでどなたか分かりやすく教えてもらえませんか?? <さらにもし出来る方がおられたら…>------------------------------------ 実は最終的にはある数(a(素数))があって、そのaと”たがいに素”である数(b)をプログラムで求めたいんです…。 ある本によると適当な二つの素数p、qがあるとしてこのふたつの積(つまりp*q)をmとします。また、(p-1)(q-1)=aとすると ”gcd(b,a)≡1(mod m)” という式を満たすんだそうです…。 ※この中にでてくる値で実際に分からないのは"b"のみです。 ※ここで書いているgcd(b,a)というのはaとbの最大公約数のことです。 --------------------------------------------------------------------- かなり難しいのでこの質問の回答をいただくと本当に助かります。 よろしくお願いしますm(_ _)m

  • 不等式の証明

    a,b,x,yはすべて正の数で,x/a<y/bとするとき,次の不等式を証明せよ。 (問)ay-bx>0 (証明) x/a<y/b、両辺にabをかける。 bx<ayとなる。 ここでay-bx>0がすでに証明されているのではないかと私は思ったんですが、この先どう証明してよいのかわかりません。 私が解いたところまでで違うところがあれば教えてください。 よろしくお願い致します。

  • 最大公約数、定理の証明

    a,bを a=b=0 でない2つの整数とするとき a*r + b*s =(a,b)       のような整数 r,s が存在する --------------------------------------- という定理があって、この定理を使って 次の定理を証明せよ、という問題なのですが… d=(a,b) 整数 n は、 n|d のとき、その時に限り a と b の公約数である … n|d は dはnで割り切れるという意味 どういうふうに導くのかわかりません。 d=(a,b)= a*r + b*s = t*n  (tは整数) とおく、ここまで何となくやってみたのですが… 「公約数」であることを示す方法、目標が見えません。 教えてください。

  • 不等式の証明を教えてください

    不等式の証明問題で分からないので教えてください。 a>0,b>0のとき、次の不等式を証明しなさい。また、等合が成り立つ場合を調べなさい。 a^3+b^3≧a^2b+ab^2 この問題がどうしてもわからないので、教えてください。

  • 高一数学です。なるべくお早めに・・(証明)

    明日期末テスト(数A)があります。出来ればいますぐ教えてください。問題には ★|a|<1.|b|<1のとき、次の不等式が成り立つことを証明せよ。 (1)1+ab>0 (2)|a+b|<1+ab とあり、(2)が分かりません。きっと(1)を使うのだと思いますが・・。 それと、全く別の問題でもう一つ。(これも証明です) ★√~~~~~~~~~~~~~~~~~~~~~~ 2(aの2乗+bの2乗)≧|a|+|b| *上の√は、左の式の最後までかかります。 どうかおねがいします。

  • 不等式の証明(やや発展)

    お世話になっております。 a,b,cは実数、a+b+c=0であるとき、不等式 (|a|+|b|+|c|)^2≧2(a^2+b^2+c^2) を証明せよ。また、等号が成立つときはどのようなときか。 という証明問題について質問です。証明自体はそれほど難しくは無いのかな、と思ってますが…。 a^2+b^2+c^2=(a+b+c)^2-2(ab+bc+ca)=0-2(ab+bc+ac)と出来ますから、 左辺-右辺=-{(a+b+c)^2-2ab-2bc-2ca}+2(|ab|+|bc|+|ca|)=2{(|ab|+ab)+(|bc|+bc)+(|ca|+ca)}…(1) 常に、|ab|≧-abであるから、|ab|+ab≧0、(bc、caについても同様)であるから、(1)≧0。与えられた不等式は成立つ。 ここで質問。等号成立条件が分かりません。不等式の証明より、|ab|=-ab(bc、caも同様)が成立つ時だと思うのですが略解によると、 a、b、cの少なくとも一つが0であるときなのだそうです。何故でしょう…。  a,b,cのうち少なくとも一つが0 ちゅうことは、a=0またはb=0またはc=0 ということになろうかと思います。ということは、更にabc=0 という式も言えるハズです。しかし、当方の不等式の証明の仕方が不適切なのか、abc=0 を導く根拠が見当たりません。

  • 絶対値を含む不等式の証明(2)

    お世話さまです。 絶対値を含む不等式の証明にはほんとにお手上げです。 ふつうの不等式の証明はできていたのですが・・・。 次の不等式を証明しなさい。と言う問題で。 |a-b|<=|a|+|b| 私のこたえかた(見よう見まねで全然わかっていないのですが) |a-b|^2-(|a|+|b|)^2<=0 a^2+2ab+b^2-a^2-2ab-b^2<=0 0<=0 |a-b|^2-(|a|+|b|)^2<=0 よって|a-b|<=|a|+|b| 等号はa=b=0 絶対、おかしいとは思うのですが、 絶対値の不等式でなにをすればいいのかわかっていません。 上記の問題の解き方と絶対値の不等式の証明はなにをすればいいか ご教授ください。よろしくお願いします。

  • 最大公約数 gcd(a,b,c) と一次合同式の解の存在

    初等整数の証明で困ってます。 (1)gcd(a,b,c)はgcd(a,b)の約数であることを証明せよ。 (2)gcd(gcd(a,b),c)はgcd(a,b,c)の倍数であることを証明せよ。 また合同式の定理の証明について gcd(a,b)=1ならばax≡c(mod b)は解をもつ。 さらにこの合同方程式の一つの解をpとすると、すべての整数kについてp+kb も解である。逆にこの合同方程式の任意の解はp+kb と表わされる。 ax≡c(mod b) は b | (ax-b) を導けばよいのでしょうか? お願いします。

  • 不等式の証明

    不等式の証明 今私はいろいろな不等式についてまとめを作っているのですが、証明の仕方がわからないものと例題が見つからないものあるのです。 よかったら教えていただけないでしょうか? 証明の仕方については、下の例のように方針も書いてくれるとありがたいです。 教えていただきたいものをはいくつかあるのですが、1つだけでも知っているものがあればお願いします 無いとは思いますが、私は高校3年生なので、大学に入ってからじゃないと習わないものなどはなるべく避けてほしいです (例) □□をしたいのでまず〇〇を考える 次に~~ では教えていただきたいものを書きます。 1:「a<b,x<y」のとき「ax+by>ay+bx」 2:1の3文字ずつバージョンなのですが、私の使っている参考書や問題集に載っていなかったので証明してほしい式すら書けません。ごめんなさい。 3:f(x)が下に凸のとき、{f(a)+(b)}/2≧f{(a)+(b)/2}の例題