• ベストアンサー

ZnがZのイデアルである事を示したいのです。

ZnがZのイデアルである事を示したいのです。 イデアルの定義は (i)x,y∈Znが和に関して閉じている (ii) r∈Zの時、rx∈Zn、xr∈Zn だと思います。 (i)を示す ∀(a)mod(n),(b)mod(n)∈Zn (a)mod(n)+(b)mod(n)=(a+b)mod(n)∈Zn (∵Znは群なので) (ii)を示す 次にZはZ1の事なので ∀(z)mod(1)∈Zをとると (a)mod(n)・(z)mod(1)=????? とここから先に進めません。 積はどう書けるのでしょうか?

質問者が選んだベストアンサー

  • ベストアンサー
回答No.1

ZnではなくてnZではないでしょうか。 ZのイデアルはZの部分集合に対し(i),(ii)をみたすものをいうのでは?ZnはZの部分集合ではありません。 Zは単項イデアル整域なので任意のZのイデアルは(n)=nZの形にかけます。

Nnarumi
質問者

お礼

Znではなく、nZでした。 どうもお騒がせ致しました。

関連するQ&A

  • Zn=Z/nZのすべてのイデアルについて

    整数環Zに対して,Zn=Z/nZ(nは2以上の自然数)とするとき, Znのすべてのイデアルはどうなりますか? 証明もつけていただけると助かります. よろしくお願いします.

  • イデアルについて

    環Rのイデアル I_1=(a1,...,an)、I_2=(b1,...,bn)の積I_1I_2を (aibj)_{1≦i≦n,1≦j≦m}:nm個の元aibjで生成されるイデアル で定義する (例 (I_1=(a1,a2)、I_2=(b1,b2,b3) (⇒I_1I_2=(a1b1,a1b2,a1b3,a2b1,a2b2,a2b3) この時、Z[√(-5)]のイデアル α1=(2,1+√(-5))、α2=(2,1-√(-5)) β1=(3,1+√(-5))、β2=(3,1-√(-5)) に対し α1α2=(2)、β1β2=(3) α1β1=(1+√(-5))、α2β2=(1-√(-5)) を示せ 解き方がわかりません。 教えてください(。í _ ì。)

  • 代数の問題です。

    加法群G=Zの部分群H=nZ(n≧1は 自然数)に関する剰余類aHをa+nZと加 法的に表す。 また、a,b∈Zに対し、a-bがnの倍数 のときa≡b(mod n)と表し、aとbはn を法として合同であるという。 これは、a+nZ=b+nZと同値である。 剰余類の集合G/H=Z/nZをZnと表す。 Cn:位数nの巡回群={e,a,a^2,…a^n-1}a ^n=eとする (1)a≡a′(mod n),b≡b′(mod n)な らば、a+b≡a′+b′(mod n)を示せ 。 これより剰余類の集合Znに(a+Z)+(b+Z )=a+b+Zによって 積(この場合は和)が定義されることを 示し、 Znに群の構造が入ることを示せ。(Zn をnによる剰余類群という。) (2)剰余類群Znは巡回群Cnと同型であ ることを示せ

  • 代数の問題です。

    大学の代数でこのような問題がでて きて、わからないので教えてくださ い 。よろしくお願いします。加法群G=Zの部分群H=nZ(n≧1は 自然数)に関する剰余類aHをa+nZと加 法的に表す。 また、a,b∈Zに対し、a-bがnの倍数 のときa≡b(mod n)と表し、aとbはn を法として合同であるという。 これは、a+nZ=b+nZと同値である。 剰余類の集合G/H=Z/nZをZnと表す。 Cn:位数nの巡回群={e,a,a^2,…a^n-1}a ^n=eとする (1)a≡a′(mod n),b≡b′(mod n)な らば、a+b≡a′+b′(mod n)を示せ 。 これより剰余類の集合Znに(a+Z)+(b+Z )=a+b+Zによって 積(この場合は和)が定義されることを 示し、 Znに群の構造が入ることを示せ。(Zn をnによる剰余類群という。) (2)剰余類群Znは巡回群Cnと同型であ ることを示せ

  • イデアルについて質問です。

    (i) 環Zにおいてイデアルの等式(24, 570)=(a)が成り立つような自然数aを求めよ。 (ii) 環Z[x]においてイデアル(2、x)は単項イデアルでないことを求めよ。    問題の解答よろしくお願いします

  • イデアルについて

    (1)イデアルのノルムについて 初等整数論講義などの二次体に限った議論をしている本では、イデアルIのノルムN'(I)(あえて'をつけています)とは共役イデアル(Aの元の共役全体の集合)をI'としたときII'=(n)となる有理整数のことだと定義しています(nの存在は証明されている)。 これは一般のデデキント環AにおけるイデアルIのノルムN_A(I):=|A/I|に矛盾するでしょうか? しないとしたら証明をお願いします。 (2)アルティン環のイデアルは有限個ですか? k[x^2, x^3]/(x^4) においてax^2 + bx^3 (a,b は体kの元)で生成されるイデアルたちが無限個ありそうなので、偽と踏んでいますが厳密な証明を与えられる方はいらっしゃいませんか。 (3)Z[x]のイデアル(の形)を全て求めてください。ただし https://math.stackexchange.com/questions/300170/ … にある情報は断りなく使用して良いです。解かれているか否か、情報だけでもいいですし、考察でもいいので是非ご回答ください。

  • Cの部分環R=Z[√-5]について以下。。。

    Cの部分環R=Z[√-5]について以下の問いに答えよ。 (i) I={2a + (1 + √-5)b∈R | a,b ∈Z }置くとき、I は R のイデアル     であることを示せ。 (ii) Rのイデアル等式 I^2 = (2)を示せ。 (iii) Rの単元を全て求めよ。 (iv) Rのイデアル(3)は素イデアルであるが、理由とともに答えよ。 (v) 環の同型 Z[x]/(x^2 + 5) ≅ R を示せ。 (vi) R を自然にZ加群と見なすとき、Rは自由Z加群であることを示せ。 という問題の解き方が分かりません。 回答よろしくお願いします。  

  • イデアルの重要性が分かりません

    イデアルの定義は、 ある集合Rに含まれる部分集合である環Iの元aとRの元bの積が Iの元であるときのaをイデアルと呼ぶ というものですが、これの一体どこがどう重要なのでしょうか? よく書籍では環論においてもっとも重要な概念で一つである というように説明されますが、どこがどう重要なのか分かりません。 どなたか平易な言葉で説明して頂けないでしょうか?

  • 代数学の問題なんですが…

    (1)Q[x]において{f(x)∈Q[x] | f(√2)=0}はイデアルか? (2)2は{a+b√-5 | a,b∈Z}において規約元か? (3)可換環Z/12Zのイデアルとその包含関係を書け (4)Q(√2)(={a+b√2 | a,b∈Q})からそれ自身への環準同型をすべて書け。 (5)Rを環、IをRの両側イデアルとする。  R/Iの元a+Iとb+Iの和をa+b+I、積をab+Iとするとこの和と積は  代表元a,bの取り方に依存しないこと(即ちWell-defind)であることを示せ 代数学がちょっと苦手なので簡単な問題かもしれませんが どうかご指南おねがいしますm(_ _)m

  • 極大素イデアルと極大イデアル

    まず、質問文が長くなったことと、定義などをいろいろ細かく指定したことをお詫びします。 また、極大素イデアルというのは maximal prime ideal を勝手に日本語にしたもので、正しい数学用語かどうかわかりません。 この質問では乗法の単位元1をもつ可換環のみを考え、素イデアルは(1)に等しくないとします。 記号の使い方で、A⊆BはAがBの部分集合、A⊂BはAがBの真部分集合を表すとします。 このとき、素イデアルPに対して、P⊂P’⊂(1)を満たす素イデアルP’が存在しないとき、Pを極大素イデアルと定義します。 ある数学書には、 Rをネター環、PをRの極大イデアル、A≠(1)をRのイデアルとするとき、 P^n ⊆A⊆Pとなる自然数 n が存在する⇔Aは準素イデアルで√A=Pが成り立つ という命題が載っていて、別の数学書には、 Rをネター環、PをRの極大素イデアル、A≠(1)をRのイデアルとするとき、 P^n ⊆Aとなる自然数 n が存在する⇔Aは準素イデアルで√A=Pが成り立つ という命題が載っています。ふたつを見比べると、これらの命題に限れば極大素イデアルと極大イデアルは互換性をもつといえます。 質問したいのは上の命題の証明ではなく、極大素イデアルと極大イデアルは同じものかどうかということです。 極大イデアルが極大素イデアルであることは明らかですが、逆は成り立つでしょうか。 成り立たないとすれば、P⊂B⊂(1)を満たす極大素イデアルPと素イデアルでないイデアルBが存在する例があるはずですが、そういう例が見つかりません。 極大素イデアルが極大イデアルであることを証明しようとも試みましたが、証明できませんでした。 有理整数環Zでは極大素イデアルは必ず極大イデアルになり、k[x, y] の極大素イデアル (x, y) も極大イデアルですが、例を挙げただけでは証明になりませんので。 どうか、アドバイスをよろしくお願いします。