• ベストアンサー

グラフの平行移動

はじめまして。 数学IAの二次関数の問題に行き詰りました。。 放物線 y=x^2-4x を、x軸方向に2(p)、y軸方向に-1(q)だけ平行移動して得られる放物線の方程式を求めよ。 と、いう問題なのですが・・・ y-q=f(x-p)に当てはめて計算する、と解説されているのですが、イマイチわかりません。 自分の頭ではこう計算しているのですが、 y-(-1)=(x-2)^2 y=(x-2)^2-1 y=x^2-4x+4-1 y=x^2-4x+3 本に書かれている解答は、 y-(-1)=(x-2)^2-4(x-2) y+1=x^2-4x+4-4x+8 y=x^2-8x+11 と、説明されています。 この、-4(x-2)というのがどう計算されて出てきてるのかまったくわからないのです。 教えていただきたいです。 お願いします。

  • WHM
  • お礼率50% (3/6)

質問者が選んだベストアンサー

  • ベストアンサー
  • foulu
  • ベストアンサー率22% (2/9)
回答No.1

f(x-p)とは元の式y=f(x)の全てのxをx-pに置き換えるということです。

WHM
質問者

お礼

なるほど。 すべてのxにx-pを当てはめるんですね! ありがとうございました。 助かりました。

その他の回答 (2)

回答No.3

その公式の意味というのは、 y-qという部分は式をy方向に式のグラフを平行移動させています。 右辺のF(x-p)という部分はxの関数F(x)をx軸方向にpだけ平行移動させるということを表しています。 なので、 y=x^2-4x を、x軸方向に2(p)、y軸方向に-1(q)だけ平行移動させるには、 すべてのx、yに当てはめなくてはいけません。

WHM
質問者

お礼

回答ありがとうございました。

回答No.2

y-q=f(x-p)の右辺のf(x-p)というのは、  f(x)の x の部分全てに x-p を入れる。 という意味です。 今、f(x)=x^2-4xなので、「f(x)のxの部分」は2カ所ありますから(x^2と、-4x)、xの部分全てにx-2を入れると、  x^2-4x → (x-2)^2-4(x-2) となります。 

WHM
質問者

お礼

わかりやすい回答ありがとうございました!

関連するQ&A

  • 関数・平行移動・軌跡 (高校数学1)

     こんにちは。高校数学1 関数に関する問題集中の問題の解答の解説に関連して質問します。 問題:  「放物線Y=X^2を点(1,2)を通るように並行移動した放物線全体を考える。  このような放物線の頂点Vの描く軌跡を求めよ。」 解答:    「放物線Y=X^2 …(1) を  X軸方向にp、Y軸方向にqだけ並行移動しものは、方程式    Y-q=(X-p)^2 …(2)  で表される。  放物線(2)が点(1,2)を通るための条件は    2-q=(1-p)^2  すなわち q=-(p-1)^2+2  が成り立つことである。  さて、放物線(2)の頂点Vの座標は    V(p、q)  であるから、p、qが条件(3)を満たして変化するときのV(p、q)の軌跡が求めるものである。  よって、Vの軌跡は    Y=-(X-1)^2+2 …(4)   で表される放物線である。」 質問→ (4)に関して、V(p、q)の軌跡     q=-(p-1)^2+2   をどういう理由で    Y=-(X-1)^2+2  に置き換えたのかがよく分かりません。分かる方がいらっしゃいましたら、もう少し詳しい解説をお願いします。

  • 放物線の平行移動

    僕は今年高校に入った新入生です。分からないことがあるのでここに書かせていただきます。 数研出版の数学1には下記のようなことが書かれています。 * XXはXの平方ということです。 「放物線y=2xxをFとする。Fをx軸方向に3,y軸方向に4だけ平行移動して得られる放物線をGとすると、Gはy-4=2(x-3)(x-3)になる。 それは次のように考えても分かる。 G上に任意の点P(x,y)をとり上で述べた平行移動によって移されるF上の点をQ(X,Y)とすると x=X+3 y=Y+3 すなわちX=x-3 Y=y-4 点QはF上にあるからY=2XX この式のXにx-3をYにx-4を代入するとy-4=2(x-3)(x-3) これはGの方程式である。」 まず前提としてFとGの方程式やグラフは異なることは明確です。 しかしFの方程式 Y=2XX にX=x-3 Y=y-4を代入すると y-4=2(x-3)(x-3) つまりGの方程式になります。 このままではこの二つは同じ方程式ということで重なった放物線になってしまいます・・・。どこが間違っているのでしょうか。ご指摘をお願いします。

  • グラフの平行移動の説明

    高校数学からの質問です。 y=xのグラフにおいて、x軸正方向にpだけ平行移動すると、y=x-pとなり、y軸正方向にpだけ平行移動するとy=x+pになります。一次関数に限らず二次関数でも、平行移動において、x軸方向だと-p、y軸方向だと+pという操作をすると思います。 しかし、グラフを見てわかっても、なぜ平行移動において、x軸方向だと-p、y軸方向だと+pになるのか理屈がわかりません。 宜しくお願いします。

  • 改めて、2次関数の平行移動。

    皆様宜しくお願い申し上げ致します。 2x2は、2xの2乗と理解して頂きたく思います。 昨日大変親切な方から解答を頂いたのですが、説明が数式ばかりで高校生の僕には結局理解出来ませんでした。 僕の数学的経験が浅いのが原因だと思います。 質問をさせて頂きます。 以下の文章は、数研の日本一難しい教科書の一節です。 放物線y=2x2をFとする。Fをx軸方向に3,y軸方向に4だけ平行移動して得られる放物線をGとすると、Gの方程式が y=2(x-3)2+4 すなわちy-4=2(x-3)2 になることは、既に学んだ。 此処までは理解出来ております。 このことは、次のように考えてもわかる。 以下の文章が僕には理解出来ません。 G上に任意の点P(x,y)をとり、上で述べた平行移動によってPに移されるF上の点を Q(X,Y)とすると x=X+3, y=Y+4 すなわち X=x-3,Y=y-4 点QはF上にあるから Y=2X2 この式のXにx-3を、Yにy-4を代入すると y-4=2(x-3)2 此処までは理解出来ます。 僕の考えでは、 点Q(X,Y)はあくまでも放物線F上にあるから、 Y=2X2 此処で、 X=x-3,y=y-4を、グラフF上の点Q(X,Y)に代入するのだから、代入し終わった 点Qの座標は、(x-3,y-4) 改めて、点QはグラフF上にあるのだから、 グラフFの方程式、 y=2x2 に、グラフF上の点Q(x-3,y-4)を代入するのだから、 y-4=2(x-4)2は放物線Fの方程式 と考えてしまいます。 教科書の記述では、 これは放物線Gの方程式である。 と書いて有ります。 何処が僕の数学的論理が間違っているのでしょうか? 何方か、数式だけで無くて、日本語も含めて説明して頂けると有り難いです。 是非是非宜しくお願い申し上げ致します!

  • 2次関数の平行移動。

    教科書数学1の記述です。 放物線y=2x2をFとする。Fをx軸方向に3,y軸方向に4だけ平行移動して得られる放物線をGとすると、Gの方程式が、 y=2(xー3)2+4 すなわち y-4=2(xー3)2 になることは、既に学んだ。 此れの記述の意味は分かります。 このことは、次のように考えてもわかる。 G上に任意の点P(x,y)をとり、上で述べた平行移動によってPに移されるF上の点を Q(X,Y)とすると x=X+3,y=Y+4 すなわちX=x-3,Y=yー4 点QはF上にあるから Y=2X2 この式のXにx-3を、Yにyー4を代入すると yー4=2(xー3)2 これは放物線Gの方程式である。 の、記述の意味がイマイチ何を言いたいのか良く分かりません。 多分、G上の任意の点P(x,y)の、任意、と言う言葉がヒントに成ってる様な気がします。 何か、キツネに騙された様な気がして、頭の中が、スッキリしません。 何方か、僕の頭の中をスッキリさせてくれる様な回答を宜しくお願い申し上げ致します!

  • 二次関数グラフの平行移動、対象移動の問題です。

    二次関数y=x^2のグラフをx軸方向にp、y軸方向にqだけ平行移動した後、x軸に関して 対象移動したところグラフの方程式は、y=-x^2-3x+3となった。 この時のp、qの値を求めよ。と問題があります。 平行移動してx軸に関して対象移動した後の式がy=-x^2-3x+3なので単純に基本形に してやるだけで良いと考えてy=-x^2-3x+3から-(x+3/2)^2+21/4となり p=-3/2、q=21/4が求まったのですが、解答はp=-3/2、q=-21/4でした。 二次式から基本形を求めるだけで何故適切な符号を持ったqが求まらないのでしょうか? x軸に対して対象移動した場合qの符号が変わるのは理解できるのですが、x軸に対して 対象移動した後の2次式からp、qを求めるので基本形を求めるだけで適切な符号を持った qが求まるような気がしているのです。どなたかこの疑問を教えてください。

  • 二次関数グラフの平行移動

    数学から遠ざかり早10年ですが 参考書片手に勉強している者です。 試験の問題だったため答えは分かりませんが 手法のほど導いてくれませんか? --------------------------------------------- 2次関数 y=2(x-1)(x+p) (ただしp>0) について このグラフが y=2x~2のグラフをy軸方向については -8だけ平行移動したものであるとき、 pの値を求め、またx軸方向についてはどれだけ 平行移動したものかを答えなさい。 --------------------------------------------- 今私が分かるのは下の3つの公式です。 y=ax~2+bx+c  …通る3点が分かる場合 y=a(x-α)(x-β) …x軸との交点が(α,0)(β,0) y=a(x-p)~2+q …頂点が(p,q)、軸がx=p 答えについては グラフの形と頂点(x,-8)という想像ができます。 どうぞ宜しくお願いいたします。

  • 2次関数の平行移動の証明

    どうしても納得できないので質問させていただきます。 2次関数y=ax^2をx軸方向にp、y軸方向にqだけ平行移動した放物線の方程式が y-q=a(x-p)^2 であらわされることを証明せよ。という問題なのですが、証明は 点(x,y)をx方向にp、y方向にqだけ平行移動した点を(X,Y)とおくと、 X=x+p Y=y+q が成り立ち、これを変形すると x=X-p y=Y-q となるので、この式をy=ax^2に代入すると Y-q=a(X-p)^2 ゆえに求めるものはy-q=a(x-p)^2 となっているんですが、最後の Y-q=a(X-p)^2・・・(*1) が y-q=a(x-p)^2・・・(*2) に変換される理由がよくわかりません。こちらの解釈では、 (*1)が表すのは平行移動前の放物線を(X,Y)を使って言い換えた式。 (*2)も同じように考えてy-q=Y、x-p=Xすなわちy=Y+q、x=X+q、なのでY=aX^2という式を平行移動したという式になるのではないか、 という感じです。わかりにくいかもしれませんが、自分でもよく説明できずにいます。 なんかすごい根本的なことを勘違いしてるような気がして不安です。どなたか説明していただきたいです。

  • グラフの平行移動

    昔からうまく納得出来ていないことなのですが。。 例えば、点(a,b)をx軸方向にp、y軸方向にq、移動すると、点(a+p, b+q)へ移りますよね? それに対して、グラフを平行移動する時は、 y = ax + bであれば、 y - q = a (x - p) + b となります。 ここで、なぜpとqを足すのではなく、引くのかがよく分からないのです。 y = ax + b上の任意の点をX,Yと置いて、移った後の点をx,yと置くと、 x = X + p y = Y + q これを変形して、 X = x - p Y = y - q X、YはY = aX + bなので y - q = a (x - p) + b である。 というのでは、いまいち納得できないのです。 これでは、単に式の変形途中で引くになったから、 「引く!!」みたいな。。感じで。。 なにか直感的に分かるような解説はないでしょうか?

  • 放物線の平行移動についてちょっとした思い込みをしてるみたいです。

    放物線の平行移動についてちょっとした思い込みをしてるみたいです。 『放物線y=2x^2をFとする。Fをx軸方向に3、y軸方向に4だけ平行移動して得られる放物線をGとする。 G上に任意の点P(x,y)をとり、上で述べた平行移動によってPに移されるF上の点をQ(X,Y)とすると x=X+3、y=Y+4 すなわち X=x-3、Y=y-4 点QはF上にあるから Y=2X^2 この式のXにx-3、Yにy-4を代入すると y-4=2(x-3)^2 これはGの方程式である。』 と数Iの教科書に書いてあります。 ちょっと疑問があります。 Q(X,Y)のXはx-3、Yはy-4と表してあります。 つまりQ(x-3,y-4)です。 QはF上の点です。 しかしY=2X^2にQを代入したらGっていうのに疑問を感じます。 Gは y-4=2(X-3)^2です。 しかしGは点Qを通ってません。 つまり、QはF上の点だから、Fの方程式になるんじゃないか?と思い込みをしてしまいます。 なんでですかね? まあ、FはすべてのXとYについて成り立ちます。つまり、Fの放物線を表す式はXとYが含まれていて、xとyは含まれない。 Gはすべてのx、yについて成り立ちます。つまり、Gの放物線を表す式はxとyが含まれていて、XとYは含まれない。 故に、求められた式はxとyの関係式であるからGの方程式である。 という解釈は大丈夫ですかね?