OKWAVEのAI「あい」が美容・健康の悩みに最適な回答をご提案!
-PR-
締切り
済み

y=2sinx+cosxの最大値

  • 暇なときにでも
  • 質問No.208718
  • 閲覧数678
  • ありがとう数0
  • 気になる数0
  • 回答数4
  • コメント数0

y=2sinx+cosxの最大値を求めよ。

全然分かりません。
解説お願いします。
通報する
  • 回答数4
  • 気になる
    質問をブックマークします。
    マイページでまとめて確認できます。

回答 (全4件)

  • 回答No.1
レベル10

ベストアンサー率 32% (75/231)

y=2sinx+cosx =√3 (2/√3 sinx + 1/√3 cosx) =√3 (sinαsinx +cosαcosx) と変形できます。あとはご自分で考えましょう。(答えが出てるけど)
y=2sinx+cosx
=√3 (2/√3 sinx + 1/√3 cosx)
=√3 (sinαsinx +cosαcosx)

と変形できます。あとはご自分で考えましょう。(答えが出てるけど)

  • 回答No.2
レベル10

ベストアンサー率 18% (28/153)

No.1 √3→√5では 私も時々こういうミスやるんですよ
No.1
√3→√5では
私も時々こういうミスやるんですよ
  • 回答No.3
レベル11

ベストアンサー率 44% (107/243)

こういう問題の場合、三角関数の合成(加法定理)を使います。 (1)sinとcosの係数に注目し、それぞれの係数を2乗したものを足してその平方根を取ります。 → ((2の2乗)+(1の2乗))の 平方根→√(2^2+1^2)→√5 (2)次に(1)で出た答えを前に出します。(つじつま合わせのためsinとcosはその数で割っておきます。(前に出した分をわってあげれば式自体の値は変わりませんので) ...続きを読む
こういう問題の場合、三角関数の合成(加法定理)を使います。

(1)sinとcosの係数に注目し、それぞれの係数を2乗したものを足してその平方根を取ります。
→ ((2の2乗)+(1の2乗))の 平方根→√(2^2+1^2)→√5

(2)次に(1)で出た答えを前に出します。(つじつま合わせのためsinとcosはその数で割っておきます。(前に出した分をわってあげれば式自体の値は変わりませんので)
→ 2sinx+cosx
=√5{(2/√5)sinx+(1/√5)cosx}

(3)(2)で得られた{ }の中に注目します。( )の中の数字は必ず-1以上1以下の数字となっています。さらに( )の中の数字を2乗して足すと必ず1となります。(そうなるように(1)の計算をしている)。(2/√5)^2+(1/√5)^2=1。これってsinx^2+cosx^2=1ってことです。つまり( )の部分はsinあるいはcosで置き換えることができます。

(4)加法定理と比較しています。
sin(x+y)=sinx・cosy+siny・cosxと比較してみると、(2/√5)の部分がcosy、(1/√5)の部分がsinyに相当していますよね?このことからyの値が求まります。(綺麗な数字にはなりませんが)

このことから
2sinx+cosx
=√5sin(x+y)という形に変形できます。ただしyはcosy=(2/√5)、siny=(1/√5)です。
sinの関数は-1以上1以下ですから最大値(あるいは最小値)がわかりますよね?
  • 回答No.4
レベル10

ベストアンサー率 32% (75/231)

>No.1 >√3→√5では >私も時々こういうミスやるんですよ わぉ。おおぼけでした。√3ってあんまり出てこないのに珍しいな,とは思ってたのですが... 大学受験から15年近く経ってるのですっかり算数力を失ってしまってます。(涙)
>No.1
>√3→√5では
>私も時々こういうミスやるんですよ

わぉ。おおぼけでした。√3ってあんまり出てこないのに珍しいな,とは思ってたのですが...
大学受験から15年近く経ってるのですっかり算数力を失ってしまってます。(涙)
このQ&Aで解決しましたか?
-PR-
-PR-
このQ&Aにこう思った!同じようなことあった!感想や体験を書こう
このQ&Aにはまだコメントがありません。
あなたの思ったこと、知っていることをここにコメントしてみましょう。

その他の関連するQ&A、テーマをキーワードで探す

キーワードでQ&A、テーマを検索する
-PR-
-PR-
-PR-

特集


いま みんなが気になるQ&A

-PR-

ピックアップ

-PR-
ページ先頭へ