A集合とB集合の距離が0ではないことの証明

このQ&Aのポイント
  • A集合がコンパクトで、Bが閉集合であり、AとBの共通部分が空集合である場合、A集合とB集合の距離は0ではないことを証明します。
  • まず、Bが有界である場合、A集合とB集合の共通部分が空集合であるため、距離は0ではありません。
  • 次に、Bが有界でない場合、A集合とB集合を表す数列AkとBkが存在し、Akが点aに収束するとします。A集合が有界であるため、||Ak||≤M(M>0)が成り立ちます。また、B集合はA集合との共通部分が無く、有界でもないため、||Bk||>Mが成り立ちます。そして、||Ak-Bk||=||Bk-Ak||>||Bk||-||Ak||>0となります。よって、A集合とB集合の距離は0ではないことが証明されます。
回答を見る
  • ベストアンサー

以下の証明を考えています。

A集合がコンパクト(Compact)で、Bが閉集合であり、AとBの共通部分が空集合であるとする。点aはA集合、bはB集合に属する。このとき、 d(A, B) = ||a-b|| >0 であることを証明せよという問題です。 まず第一にBが有界である時は、AとBの共通部分が空集合であるから明らかに両者の距離は0ではないとしました。 第二のBが有界でないときの証明でご意見をお伺いしたいのです。 A集合(B集合)のある数列Ak(Bk)が、kが無限に近づくにつれて点a(点b)に近づくとします。すると、A集合が有界であることから、 ||Ak||< or = M for some M>0 が言え、またB集合はA集合との共通部分が無く、有界でもないことから ||Bk||>M が言えるとし、 ||Ak-Bk||=||Bk-Ak||>||Bk||-||Ak||>0 としたんですが、これにはかなり無理があるように思えます。どなたかご教授ください。よろしくお願いします。

質問者が選んだベストアンサー

  • ベストアンサー
  • kabaokaba
  • ベストアンサー率51% (724/1416)
回答No.1

#コメントつかないですね。。。 ええっと,まず,問題の情報が不足なんです おそらく,n次元ユークリッド空間を ふつうの距離(二乗和のルート)で距離空間と みなして,そこで考えてるんですよね それから d(A,B)の定義は ||a-b|| ではなくて aをAの中で,bをBの中で動かしたときの 下限ですよね? 上記のような推測のもとで考えると 残念ながら証明は間違ってます Bがともに有界で,共通部分が空でも d(A,B)が0になることはあります. 一次元で考えて A={0} B=(0,1]なんかだとd(A,B)=0です 閉だという条件がポイントなんです. 話を簡単にするために Aは一点(一般性を失わずに原点Oとできます) Bは閉集合とします. このとき, d(A,B)=\inf_{bはBの要素} ||b|| とおけます. したがって,Bの点列{b_k}で k -> ∞ のとき,||b_k|| -> d となるものが とれます. このとき,必要ならば{b_k}の部分列をとることにして {b_k}は収束すると仮定します. #ここで集積点の存在を使ってますが #(ボルツァーノ・ワイエルシュトラスの定理) #Bは有界とは限りません.しかし, #||b_k|| -> d なので #{b_k}が存在する領域は有界ですので,OKです さて,Bは「閉集合」なので, {b_k}の収束先をβとするとβはBの点です そして,AとBは共通部分を持たないので βはAの点(つまり原点)ではないので d(A,B)=||β|| > 0 今はAを一点と仮定しましたが Aをコンパクトとしても同様だと思います コンパクトまではいらないようにも思いますが 深くは考えてません #一般の距離空間でもOKなような気もします

mathematical
質問者

お礼

大変丁寧な解答をどうもありがとうございました。いかんせん日本語で数学の問題を解説するのが苦手なもので、説明不足でご迷惑をおかけします。またよろしくお願いします。

関連するQ&A

  • 集合の証明について

    この問題をベン図を使わずに証明することはできますか? 集合Aと集合Bがある。 「AUB=A」⇔「BとAの補集合は排他的(BとAの補集合の共通部分は空集合)」 左から右と右から左の証明ってどうやってやるんですか?

  • 以下の証明を考えています。

    以下の証明を考えています。 任意のε>0に対して、N(x,ε)∩Aは無限集合⇔xがAの集積点 任意のε>0に対して、N(x,ε)∩Aは無限集合とういことが何を意味するのか理解できておりません。 どなたかご教授いただければ幸いです。

  • 群数列についての証明

    第k群までの項をすべて順に並べた数列を、 c1,c2,c3.......,cn  とする。 この群数列は次の条件を満たしている。  項はすべて自然数  nは第k群までの項の総数  第k群を有限数列と考えたとき、初項はak,末項はbk (特にbk=cn)  第1群の項は自然数aである。(a1=b1=a)  第1群から第k群までに現れない自然数の中で最小のものが第(k+1)群の    初項a k+1  第(k+1)群の第2項以降は    c1+a k+1, c2+a k+1, ....... ,cn+a k+1 (1) a k+1≦bk +1 を証明せよ(k=1,2,3,......) (2) 2ak≦a k+1   を証明せよ(k=1,2,3,......)

  • 無限集合に関する証明

    無限集合が存在しないことを証明しました。 以下の証明が合っているかどうか知りたいです。よろしくお願いします。 <定義> 集合の系列、A1,A2,・・・An・・・について、以下の条件が成り立っているとき、そのときに限り、この系列を、無限拡大系列と呼ぶことにします。 1:任意のnについて、An⊆An+1 <証明> 無限拡大系列が存在すると仮定します。任意の無限拡大系列をI1,I2,・・・In・・・とします。I1,I2,・・・In・・・の和集合をI∞とします。あるnについて、I∞=Inと仮定します。まず、無限拡大系列の定義より、In⊆In+1となるIn+1が存在します。よって、I∞⊆In+1。しかし、I∞の定義より、In+1⊂I∞。よって、矛盾が生じました。よって、全てのnに対して、、I∞≠In。そして、I∞の定義より、全てのnに対して、In⊂I∞。よって、全てのnに対して、In⊆I∞。これより、I∞を全体集合としたときの、I1,I2,・・・In・・・の補集合をそれぞれ、I1',I2',・・・In'・・・とすれば、全てのnに対して、In'は空集合ではありません。そして、無限拡大系列の定義から、I1'⊇I2'⊇・・・⊇In'・・・となることが分かります。よって、I1',I2',・・・In'・・・の共通部分は空集合ではありません。よって、I1',I2',・・・In'・・・の共通部分の補集合、つまり、I∞が、全体集合であるI∞と等しくなりません。よって、矛盾が生じました。よって、無限拡大系列は存在しないとなります。そして、無限集合が存在すれば、無限拡大系列は存在することになってしまいます。よって、無限集合は存在しないとなります。

  • ヘルダーの不等式の証明について教えて下さい

    教科書のヘルダーの不等式Σ|akbk|≦(Σ|ak|^p)^(1/p)+(Σ|bk|^q)^(1/q)を示す解説で(Σはk=1からnまで足してます)次のように書いてありました。 「この不等式が斉次、つまり2つのベクトル a=(a1,a2,・・・an),b=(b1,b2,・・・bn) によって満たされるなら、Aa,Ba(A,Bは任意の数)によっても満たされる。 よってこの不等式の証明はΣ|ak|^p=Σ|bk|^q=1の条件の時Σ|akbk|≦1を示せばよい」 としてこのΣ|akbk|≦1の証明が書いてありました。この式の証明は理解できたのですが、 不等式が斉次ならAaBaによっても満たされるので証明はΣ|ak|^p=Σ|bk|^q=1の時だけでよい、というのが分かりません。 図書館やネットで調べたのですが、Σ|ak|^p=Σ|bk|^q=1の時、Σ|ak|^p=α,Σ|bk|^q=βの時、のようにきちんと分けられていました。2つとも証明は理解できたのですが、教科書の「不等式が斉次ならAaBaによっても満たされるので」のような言葉で済ませてもいいのでしょうか? ここらが良く分からないので分かる方、お願いいたします

  • 証明してください!

    空集合でない、集合A,Bについて、 f(A∪B)=f(A)∪f(B) であることを証明するにはどうすればよいですか。

  • 有界でないの問題

    こんにちは。 「数列(An)が有界でない⇔すべてのk(自然数)について|Ank|>=kである部分数列{Ank}が存在する」を示す問題です。 <考え方と解答> ・A=数列{An}が有界でない ・B=すべてのk(自然数)について、|Ank|>=kである部分数列{An}が存在する "A→B" 数列(An)が有界でない ⇒ すべてののM(実数)に対して、あるn(自然数)が存在して M<|An| を満たす。 ⇒ Mとして自然数kを、nとしてnkを取ると ⇒  すべてのk(自然数)について、|Ank|>=kである部分数列{An}が存在する Q.E.D.   <質問> (1)A→Bの証明において、「Mとして自然数kを、nとしてnkを取ると」と書いたのですが もっと丁寧にわかりやすいかきかたはありますか?? 前に質問させてもらい、考えてもう一度書かせてもらいました。 アドバイスお願いします!!!

  • この場合,Cauchy列が有界となる理由は?

    宜しくお願い致します。 最下の命題の証明でCauchy列が有界となる理由がわかりません。 [定義-3]順序集合(A,≦')の部分集合Bに於いて、{b∈B ;∀x∈B,b≦'x}≠φの時、 {b∈B;∀x∈B,b≦'x}:単集合となる{b∈B ;∀x∈B,b≦'x}のただ一つの元bをminBと表記し、(A,≦')に於けるBの最小元と言う。 [定義-2]順序集合(A,≦')の部分集合Bに於いて、{a∈A ;∀x∈B,x≦'a}≠φの時、 {a∈A ;x∈B⇒x≦'a}の元を(A,≦')に於けるBの上界と言う。 [定義-1] 順序集合(A,≦')に於いて、Aの部分集合Bに於ける上界が存在する時、Bは(A,≦')の中で上に有界であると言う。 [定義0] 順序集合(A,≦')に於いて、Aの部分集合Bに於ける上界が存在する時、その上界の集合の最小限をBの上限といい,supBと書く。 [定義1] 数列{a_n}のある部分列がaに収束する時,このaを数列{a_n}の集積値という。 [定義2] 順序集合(A,≦')が完備 ⇔ (i) (A⊃)Bが上に有界ならば∃supB∈A (ii) (A⊃)Bが下に有界ならば∃infB∈A [命題1](Weierstrassの定理) 有界な数列には少なくとも1つの集積値が存在する。 [命題2] 数列{a_n}が収束する ⇔ (i) {a_n}が有界 (ii) {a_n}の集積値は唯一つ [命題3] 順序集合(A,≦')を距離空間(その距離をdとする)とする。Aが完備ならばAの任意のCauchy列{c_n}はlim[n→∞]c_n∈A. を示しています。 [証] Cauchy列の定義から0<∀ε∈R,∃M∈N;M<m,n∈N⇒d(c_m,c_n)<ε {c_n}は有界(∵?)。 従って,sup{c_n}∈A,inf{c_n}∈A(∵定義2) これから{c_n}は有界と言えるから,{c_n}は収束する (∵唯1つの集積値が存在する (∵{c_n}には少なくとも1つの集積値が存在するから(命題1), {c_n}の集積値が2つあったと仮定し,その集積値をa,bとする。 {c_n}の部分列{a_n}がaに収束,部分列{b_n}がbに収束。 収束の定義から夫々 0<ε'∈R,∃M'∈N;M'<k⇒|a_k-a|<ε' 0<ε'∈R,∃M"∈N;M"<h⇒|b_h-b|<ε' ところが |a-b|=|(a-a_k)-(b-b_h)+(a_k-b_h)| ≦|a-a_k|+|b-b_h|+|a_k-b_h|<2ε'+|a_k-b_h| ∴ |a_k-b_h|>|a-b|-2ε' これはmax{M',M"}<∀k,h∈Nに対しても|a_k-b_h|>|a-b|-2ε'となってしまう事を意味しているので ここでε':=|a-b|/4と採ってしまうと, ∃M∈N;M<k,h∈N⇒|a_k-b_h|>|a-b|/2 となり,Cauchy列の定義に反する) よって命題2) そして,{c_n}の収束値をcとするとc∈A (∵c∈A^cだと仮定してみると今,lim[n→∞]c_n=cなので 0<∀ε∈R,∃M∈N;M<m∈N⇒d(c_m,c)<εと書ける筈だが書けない(∵dはAでしか定義されてない)) 、、、と示せると思うのですが2行目「{c_n}が有界」の理由がわかりません。 d(c_m,c_n)<εからどうすれば{c_n}が有界である事が言えますでしょうか?

  • 部分数列と有界

    こんにちは。 「数列(An)が有界でない⇔すべてのk(自然数)について|Ank|>=kである部分数列{Ank}が存在する」を示す問題です。 <考え方と解答> ・A=数列{An}が有界でない ・B=すべてのk(自然数)について、|Ank|>=kである部分数列{An}が存在する 論理の対偶を示す。 ・Aでない=数列{An}が有界である ・Bでない=あるK(自然数)について、どんな部分列Ankをとっても|Ank|<kとなるkが存在する "Bでない→Aでない" つまり「あるK(自然数)について、どんな部分列Ankをとっても|Ank|<kとなるkが存在するならば数列{An}が有界である」を示す。 (証明) あるK(自然数)について、どんな部分列Ankをとっても|Ank|<kとなるkが存在すると仮定すると、   ( (1) ) すべてのAnkに対して、|Ank|<Mとなる正の定数Mが存在するので、数列{An}が有界である。Q.E.D.   "Aでない→Bでない" つまり「数列{An}が有界であるならば、あるK(自然数)について、どんな部分列Ankをとっても|Ank|<kとなるkが存在する」を示す。 (証明) 数列{An}が有界であるならば、すべてのnについて、、|An|<Mとなる正の定数Mが存在するので、   ( (2) ) あるK(自然数)について、どんな部分列Ankをとっても|Ank|<kとなるkが存在する。Q.E.D.    以上より必要十分が示せた。 <質問> (1)(1)と(2)に何か言葉を入れるべきでしょうか??いきなり答えを言っているような気がしています。 (2)この対偶をとっての解答で間違っている所はありますか?? 前に質問させてもらい、考えてもう一度書かせてもらいました。 アドバイスお願いします!!!

  • 無理数に関するこの命題は証明されているでしょうか?

    無理数に関して,以下の2つの命題は証明されているでしょうか? ご存じの方,教えて下さい.記述を正確にするために,定義から書きます. 定義(1): 十進法で表示した無限数列において,十進法の数字 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 のすべてが現れる無限数列を「全域無限数列」と仮に呼ぶことにします.■ 定義(2): 全域無限数列でない無限数列を「非全域無限数列」と仮に呼ぶことにします.■ 無理数を無限数列と考えることにして,次の命題は真でしょうか? 命題(A): 無理数は,すべて全域無限数列である.■ 命題(B): 非全域無限数列となる無理数が存在する.■ 命題(A)は正しそうな気がします.しかし,命題(B)は偽(正しくない)のような気がするのですが,命題(A),命題(B)に相当する定理はあるのでしょうか? お分かりの方,教えて下さい.