• ベストアンサー

集合の基礎

高卒ですが独学で大学数学の勉強を始めました. いろいろ情報を集めたところ最初に学ぶべきは 集合と位相あたりかと思い,問題を解き始めてみたのですが, 解答を書きかたの要領がいまいちつかめません. 以下の問題の解答にツッコミをお願いします. 【問題】 a∈A ⇔ {a}⊂A 【解答】 ←:定義より {a}⊂A ⇔ x∈{a}⇒x∈A であるから,   x=a とすると a∈{a} は真なので,a∈A が成り立つ. →:a∈{a} は真であり,仮定より a∈A であるから,   a∈{a}⇒a∈A つまり,{a}⊂A は成り立つ. 数学科の方などはこのような 図で書くと当たり前のような問題のときは どんな解答を書いているのでしょうか? ご教示お願いします.

  • BNL
  • お礼率91% (22/24)

質問者が選んだベストアンサー

  • ベストアンサー
  • rinkun
  • ベストアンサー率44% (706/1571)
回答No.1

←は問題なし。 →は足りない。 任意のxについてx∈{a}⇒x∈Aを示す必要がある。 これにはx∈{a}を仮定してx=aを示せば、a∈Aとからx∈Aがいえる。

BNL
質問者

お礼

回答ありがとうございます. 修正してみました. これでよいでしょうか? →: {a} の要素は a のみであるから,x=a のとき x∈{a} は真,x≠a のとき x∈{a} は偽となる. x=a のとき a∈{a} と仮定 a∈A から {a}⊂A は成り立つ. また,x≠a のとき x∈{a} は偽となるので,x∈{a}⇒x∈A は成り立つ. したがって,任意の x について x∈{a}⇒x∈A は成り立つ. > これにはx∈{a}を仮定してx=aを示せば、 x=a の示し方をどのように書けばよいかわからなかったので, 上の修正解答はこのアドバイスを生かしきれませんでした.

その他の回答 (1)

  • bo-suke
  • ベストアンサー率23% (58/242)
回答No.2

今大学二年です。 解答の書き方はもう大丈夫そうですね。 で、私なりに補足。 私が思うに、 図で書くと当たり前の問題の場合は、 代数的に処理して当たっているか確認する ことがメインになります。 代数的に(記号で)処理することと、図形的に処理することは、数学的には全く分離したものとして扱われています。まず表現したい図形の特性を厳密に記号で定義して、記号で処理。この記号と図形に対応を付けることで図形を表現したり、逆に活用して楽に問題が解けるようにしたりするのが数学の仕事です。ですから絵で書くと当たり前でも、記号で処理して調べなければいけません。 この時大事なのは、「決めた定義と公理、そして今までに求まった定理命題のみを使って、矢印(⇒)を進めていく」ということです。見たところきちんとできていますね。 例えば先ほどの問題なら、 定義より {a}⊂A ⇔ x∈{a}⇒x∈A であるから,(定義) x=a とすると a∈{a} は真なので,(定義) a∈A が成り立つ.(一番の命題に適用) と言う過程を、あなたは直観のうちにやっていたと言うことです。 間違いを探す時は、私の場合は、この式はどうして真だと思ったのか、真と示すために何を使ったのか、そしてそれは使い方を間違えていないか、と文節ごとに確認するようにしています。 ただ、図で書くと当たり前でも多少難解になってくると、「見た目」を拝借して証明を簡単に行なうこともあるので、全部がそう、と言うわけでもなかったりします。茶を濁すようですが。 まとめると、「一度図で書いたら当たり前と言う先入観を捨てて、記号のみで処理する。使えるのは定義公理と、今まで同じ方法で求めた命題のみ。」 解答を書くコツみたいなものを書いてみましたが、参考になったでしょうか。頑張ってください。

BNL
質問者

お礼

回答ありがとうございます. 周りに聞ける人もおらず,なかなか前に進まなかったので, 大変参考になりました. これからもこのサイトで皆さんのお世話になるかと思いますが, いずれはほかの方の質問に答えることが出来るように 頑張っていきたいと思います.

関連するQ&A

  • 全ての集合の定義を元とする無限集合は定義可能?

    年末以来ずっとべき集合というものを考えていたのですが、このべき集合というものがある限り、すべての集合を元とする無限集合を定義できない事が判りました。 すなわち、 今、考えられる全ての集合を元とする無限集合Xが定義可能と仮定する。 すると、その無限集合からべき集合Power(X)が必ず定義可能である。 Power(X)はXの元になっていないために、最初の仮定が間違っていることが証明される。 この事実が意味する事は、 「集合Xからべき集合P(X)を造ることが出来る」-----(A) 「集合を元とした無限集合Xを定義することができる」---(B) 暗黙の前提としている公理系では(A)と(B)が両立しないという事になります。 この袋小路はどう考えればよいのでしょうか? (A)が常に真ではない? (B)が常に真ではない? (A)が偽の場合のみ(B)が真である? (A)が真の場合は(B)が偽である? 暗黙の公理系になにか公理を見落としている(不足している)? 考えるヒントを頂ければ助かります。

  • 集合と位相

    (1)X,Yは位相空間とする。A,BがそれぞれX,Yの開集合であるときA×Bは直積位相X×Yの閉集合であることを示せ。 (2){Xλ}λ∈Λを位相空間の族としてAλ⊂Xλ(λ∈Λ)とする。 この時直積位相空間Πλ∈ΛXλにおいて以下を示せ。 (閉包のバーの書き方がわからないのでclと表記します) (a)cl(Πλ∈ΛAλ)=Πλ∈ΛclAλを示せ。 (b)Λは無限集合であるとき、Int(Πλ∈ΛAλ)≠φであるための必要十分条件は有限個のIntAλ≠φであり、かつその他のλについてはAλ=Xλであることを示せ。 (1)は以下のように考えたのですがわかりません。 Aの補集合、Bの補集合はそれぞれX,Yの開集合となる。 よってA^c×B^cは直積位相X×Yの開集合となる。 また(A×B)^c=(A^c×Y)∪(X×B^c) ここで詰まってしまいました。友人に聞いてみたら、 「生成する」位相という言葉の定義がわかってないと言われました。これはどのような意味なのでしょうか? 例えは直積位相の定義にもありました。 X,Yが位相空間でそれぞれの位相をЦx、Цyとした時に Цx×Цy={O1×O2|O1∈Цx,O2∈Цy}が生成する位相を直積位相という。 また位相を「入れる」ということはどういう意味なのでしょうか? (2)(a)は次のように考えてみましたがどうでしょうか? (⊃) ∀x∈Πλ∈ΛclAλを取る。∃λ∈Λ s.t. x∈clAλであるから xの任意の近傍はAλと交わる。したがってxの近傍はAλよりも大きい集合Π(λ∈Λ)Aλとも交わるので、 xはcl(Π(λ∈Λ) Aλ)の点になる。 (⊂) ∀x∈cl(Π(λ∈Λ) Aλ)を取る。 xの任意の近傍とΠ(λ∈Λ)Aλは交わるから、 あるAλと任意の近傍は交わる。これよりx∈clAλ よってx∈Πλ∈ΛclAλ (b)はわかりませんでした。アドバイスお願いします。

  • 直積集合の作り方について

    こんにちは。 物理学を学んでいる学生ですが数学を独学で勉強中で直積集合の構成について質問があります。 目的は直積集合で座標軸xを構成することとします。 このとき、 ある添数集合N(自然数)を定義し、その元をλとします。(λ=1,2,3,・・・) この時、Nによって添数づけられた集合族 (A)λ∈N を定義しておいて、 この集合族Aを(-λ, λ)としておく。 全ての添数λ(∈N)についての集合族Aの和集合で直積集合を構成することにする。 このとき、Aの和集合で構成される直積集合は(-∞,∞)の集合となりますか? この考え方で座標軸x軸を構成できると思いました。 この考え方は正しいですか? また、間違っているならどこが間違っているか教えてください。 お願いします

  • 集合・位相

    集合・位相初心者です。 授業で開集合と閉集合、近傍の定義を教えてもらったのですが、理解できず、困っています。 以下は、授業で使っているプリントに載っている定義です。 X:集合 T:Xの部分集合からなる集合族 (X,T):位相空間 とする。 Xの部分集合UがTの元であるとき、Uを開集合という。 また、Xの部分集合Fの補集合がTの元であるとき、Fの閉集合という。 点x∈Xに対して x∈U゜ を満たすXの部分集合Uを近傍という。また、このような近傍全体のなす集合族をxの近傍系といい、U(x)で表す。 具体的な例で教えて頂けると助かります。 例えば、集合X={1,2,3,4,5}、位相T={φ,{3},{4},{3,4},{1,3},{1,3,4},X}として、位相空間(X,T)をつくると、この(X,T)の開集合、閉集合、点3の近傍(点は適当に選びました)はどうなるのか。 集合・集合は初心者なので、詳しく教えて頂けると嬉しいです。 ご教授、よろしくお願い致します。

  • 数学:縦線形集合の問題です

    集合の問題です。 縦線形集合 D={(x,y)∈R²|∅₁(x)≦y≦∅₂(x), a≦x≦b} ここで∅₁,∅₂は有界閉区間[a,b]で連続で∅₁(x)≦y≦∅₂(x)(a≦x≦b)であると仮定されている。 この時集合DはR²の有界閉集合となる事を示せ。 という問題が解けずに困っています。 解答例や解答のヒントが分かる方がいましたら教えて頂きたいです。

  • わかりません!集合と位相

    集合と位相についての質問です。 問 Xを空でない集合、関数d:X×X→Rを   d(x,y)={1(x≠y)        0(x=y)   で定義する。このとき、dはX上の距離関数になることを示せ。   また、Xの点xに対してN(x;0.5),N(x;1),N(x;2)をそれぞれ求めよ。 一応ここまでは解けたのですが、 問 上の問よりdから定まる開集合をθとする。   このとき∀M⊂Xに対して、M∈θとなることを示せ。 この追加の問題がよくわかりません。 解答、アドバイス、なんでもいいので出来るだけ早めに回答をお願いします。初めてなので読みにくいかもしれませんが宜しくお願いします。

  • ”コンパクト”の定義について。集合、位相

    集合論における、”コンパクト”の定義について質問です。 言い回しの違いがあるにせよ、以下の2種類があるようですが どちらが正しいのでしょうか? (その1) コンパクトであるとは、位相空間Xの任意の開被覆が、必ずXの有限被覆を部分集合として含むことである。 (その2) ある集合Aを、有限個の開集合の和で覆えるときにコンパクトという。 個人的には、(その1)の定義が正しいとおもっています。 ”位相空間”であることが、前提条件でないと 話が進まない気がしています。

  • 集合族の和集合や積集合を教えてください

    松坂和夫の位相集合入門を読んでいます。 集合族自体の理解が危うく、19ページでその和集合や積集合の話なって完全に行き詰りました。 たとえばA={a,b}のべき集合の要素は、∅ ,{a} ,{b} , {a,b}ですが、 この4つは相異なりますからこれらの集合の積集合は無いと思います。 それに限らず一般にべき集合の要素は全て相異なるのでしょうから、集合族の積集合を考えても無意味に思います。 ですが本では集合族の和集合や積集合に言及されていることから、すでに理解が追いついていないとお思いました。 実際に集合族の和集合や積集合とはどんなものか、具体例から説明してくださればありがたいです。 また、Xの要素xを変数として含む文章pについてその文章が真になり得ることを ∃x∈X(p)と書くと約束すると 集合族をSとしたときに、明らかにその和集合は∪S={x|∃A∈S(x∈A)}と書けるという風にかいてあったのですが、私には全然分かりません。∃A∈S(x∈A)という条件を自然な言葉に置き換えられません。集合族のある要素Aにxが含まれている?という条件を満たすxと強引に解釈してみても、これも真偽を確かめられる具体例も思いつかず理解できている気がしません。 これについても解説いただければ幸いです。

  • 有限集合からなる位相空間における写像の連続性

    ある位相空間Xから別の位相空間Yへの写像fが連続であるとは、Yの任意の開集合Oの逆像f^-1(O)が開集合であると定義されていると思いますが、この定義に従うと、有限集合に位相を入れた位相空間Xからの別の位相空間Yへの写像は、位相空間Xの集合が全部開集合となり、必ず連続になるのでしょうか。

  • 素朴集合論における対応について

    当方現在素朴集合論を勉強している学生です。 素朴集合論を松坂さんの『集合位相論』で学んでいるのですが、対応の概念でわからないことが発生しました。 対応Γというのは、集合Aの任意の要素に対して、Bの部分集合を定めるような規則のことと理解しています。 ここで一つ目の疑問は、Γ(a)という集合を内包的記述でどう表すかということです。 また、食い違いがないように説明しておくと 内包的記述において、僕は以下のように理解しています。 {x|P(x)} はP(x)が真となるようなすべてのxを要素ともつ集合。 それからもう一つの疑問は p24の最後にあるように b∈Γ(a)という記述があるのですが、Γ(a)というのはあるBの部分集合です。 しかしbはBの要素として定義されています。 これは必ずしも両立しえない気がします。 ここもおかしいと思うのです。 うまく質問の意図を伝えられたかどうかはわかりませんが、 どうかお答えお願いします。