複素積分の初歩的な問題の解き方について

このQ&Aのポイント
  • 複素積分の初歩的な問題の解き方について説明します。
  • 問題文から要点を抽出し、適切な数式を使って解法を示します。
  • また、式中の絶対値の表示についても説明します。
回答を見る
  • ベストアンサー

複素積分の初歩的な問題の解き方について

教科書からの問題ですが答えが省略されているのでわかりません。 問、C={z||z|=1}とするとき、次の積分の値を求めよ。 (1), ∫[径路;C](z-2)dz (2), ∫[径路;C](z-2)|dz| の2問です。 答え、 題意|z|=1より Cは原点を中心とした半径1の円周上である。 (1), z=rexp^(iθ) とおき θをパラメータとする。 ∴dz=irexp^(iθ)*dθ ここで r=1 ∴∫[径路;C](z-2)dz=∫[θ;0→2π]{exp^(iθ)-2}iexp^(iθ)*dθ=i∫[θ;0→2π]exp^(i2θ)*dθ-2i∫[θ;0→2π]exp^(iθ)*dθ=0 (2), z=rexp^(iθ) ∴z=r(cosθ+isinθ) ここで r=1 ∴dz=(-sinθ+icosθ)dθ ∴|dz|=√{(-sinθ)^2+(cosθ)^2}dθ=dθ ∴∫[径路;C](z-2)|dz|=∫[θ;0→2π]{exp^(iθ)-2}dθ =∫[θ;0→2π]exp^(iθ)*dθ-∫[θ;0→2π]2*dθ=4π 以上私のやり方と答えでよいのでしょうか? それと、式中の絶対値符号の間隔をもっと狭く表示する方法が分かりません。なにか特別な方法があるのでしょうか?

質問者が選んだベストアンサー

  • ベストアンサー
  • rabbit_cat
  • ベストアンサー率40% (829/2062)
回答No.1

よいと思う。 |z|ってこと?半角にしてみた。

torahuzuku
質問者

お礼

今晩は。 早速のご回答ありがとうごさいます。 (2)は、-4π でしたね。負符号を落としていました。 |z| できました(^_^)。ありがとうがざいました。

関連するQ&A

  • 複素積分です。

    ∫(θ:0→π) iexp(iRexp(iθ)) dθの積分(Rは正の定数)を、 式変形 z = Rexp(iθ) と置いて ∫exp(iz)/z dzと式変形したのですが、 この場合積分路が閉曲線でないので、留数定理を用いることが出来ないと思い、つまづいてしまいました。こういう場合はどのように考えるべきなのでしょうか?また答えはいくつになるのでしょうか? 非常に素人的な考えなのですが、(θ:0→2π)ならば、答えは2πiになるので、今の場合はその半分でπiくらいになるのかなと思ったのですが(^^;

  • 複素関数の周積分の問題です。

    問題は次の二つです。  ∫dz/(z-3i) 積分経路は |Z|=π で反時計まわり。  ∫(exp(z)/z)dz 積分経路は |Z|=2で反時計と|Z|=1で時計まわり。  初めの問題はコーシーの積分定理を使えば2πiになるのは、理解できるのですが、積分定理を使わずに与えられた積分経路で積分をしていった所(z(t)=πexp(it)とした。)、[log|πexp(it)-3i|] tの区間0~2π となりこれを計算すると0になってしまいました。なぜ答えが違うのでしょうか。 二番目の問題もコーシーの積分定理を使って二つとも同じ原点を中心とした半径rの円の積分経路に置き換えれば、0になることはすぐわかるのですが、定理を使わずに計算していった所∫iexp(exp(it))dtや∫iexp(2exp(it))dtといった項が出てきてこれが計算できないのです。この問題は大人しく定理を使わなければ解けない問題なのでしょうか。 以上の2点が分からず困っています。どなたかお力をお貸しください。 よろしくお願いします。

  • 複素積分

    I1=∫[-∞,-∞]cos(a*x)/(x^2+b^2)dxを複素積分を使って求めます。 まず ∫[-∞,-∞]cos(a*x)/(x^2+b^2)dxの被積分関数の分子にi*sin(a*x)を (iは虚数単位)を加えても加えた部分が奇関数でかわらないので加え ると ∫[-∞,-∞]{cos(a*x)+i*sin(a*x)}/(x^2+b^2)dxとなります するとI=∫[-∞,-∞]exp(i*a*x)/(x^2+b^2)dxです。 ここで複素積分 I=∫exp(i*a*z)/(z^2+b^2)dz (積分路は実軸と虚軸の正の部分を通る 反時計回りの半径Rの半円) またI2=∫exp(i*a*z)/(z^2+b^2)dz (積分路は虚軸の正の部分のみを通 る反時計回りの半径Rの半円)を考えるとRが十分大きいとき I=I1+I2・・・(1)になります。 Iは留数定理よりI=2*π*i*Res[f,i*b]=π*exp(-a*b)/b・・・(2) I2はz=R*exp(i*θ)とおき I2=∫[0,π]exp(i*a*R*exp(i*θ))/(R*exp(i*θ)^2+b^2)dθ =∫[0,π]exp(-a*R*sinθ+)*exp(i*a*R*cosθ)*i*R*exp(i*θ)/(R^2*exp (2*i*θ)+b^2)dθ 三角不等式より 0<|I2|<∫[0,π]|exp(-a*R*sinθ+)*exp(i*a*R*cosθ)*i*R*exp(i*θ)|/|(R^2*exp(2*i*θ)+b^2)|dθ<π*R*exp(-a*R*sinθ)/|-R^2+b^2|・・・(3) ここでsinθ >0よりでexp(-a*R*sinθ)<1なので π*R*exp(-a*R*sinθ)/|-R^2+b^2|<π*R/|-R^2+b^2|となり π*R/|-R^2+b^2|はR-->∞で0なので結局 |I2|-->0   なので(1)より I1=π*exp(-a*b)/bが答えです。  これはわかるのですが、スタートで i*sin(a*x)ではなく-i*sin(a*x)を加えても変わらないですよね? そこで-i*sin(a*x)を加えて実際にやってみると (2)の部分はπ*exp(a*b)/bに変わってしまい、また (3)の部分はπ*R*exp(a*R*sinθ)/|-R^2+b^2|となってしまいこれでは R-->∞で発散するように思えます。 どこがまちがっているのでしょうか

  • 複素積分の問題について。

    複素積分の問題を解いてみたのですが、手元に答えがないうえに合っているか自信がないので、チェックしていただけると助かります。解法に誤りがあったらどうぞ指摘してください。自分の中では、留数の求め方が怪しいです。 以下、積分の経路Cは原点中心半径8の円で正の向きとします。 (1)∫ 1/sin(z) dz (2)∫ 1/(1-cos(z)) dz (3)∫ (1+z)/(1-e^z) dz (4)∫ tan(z) dz (1)∫ 1/sin(z) dz f(z)=1/sin(z) について、f(z) は z=mπ で特異点をとり、特にCの内部では z=0,±π,±2π が特異点となる。 ここで各点における留数を求めると、 Res(0)=1 Res(π)=-1 Res(-π)=-1 Res(2π)=1 Res(-2π)=1 となるので、 ∫ 1/sin(z) dz=2πi(1-1-1+1+1)=2πi (2)∫ 1/(1-cos(z)) dz f(z)=1/(1-cos(z)) について、f(z) は cos(z)=1、つまり z=2mπ で特異点をとり、特にCの内部では z=0,±2π が特異点となる。ここで f(z) を z=0 のまわりで展開すると、 f(z)=1/(1-1/2(z^2)+1/24(z^4)-・・・) =1/(1/2(z^2)-1/24(z^4)+・・・) であることから、Res(0)=0 同様に、Res(π)=0,Res(-π)=0 なので、 ∫1/(1-cos(z)) dz=2πi・0=0 (3)∫ (1+z)/(1-e^z) dz f(z)=(1+z)/(1-e^z) について、f(z) は z=2πim(mは整数)で特異点をとり、とくにCの内部では z=0,±2πi で特異点となる。ここで、 Res(0)=-1 Res(2πi)=-1-2πi Res(-2πi)=-1+2πi となるので、 ∫(1+z)/(1-e^z) dz=2πi(-1-1-2πi-1+2πi)=-6πi (4)∫ tan(z) dz f(z)=tan(z)=sin(z)/cos(z) について、f(z) は z=(2m+1)π/2 で特異点をとり、特にCの内部では z=±π/2、±3π/2,±5π/2 で特異点となる。ここで、 Res(±π/2)=-1 Res(±3π/2)=-1 Res(±5π/2)=-1 となるので、 ∫tan(z) dz=2πi・(-6)=-12πi

  • 複素積分の解き方がわかりません

    円周 |z - 1| = 1 上で反時計回りに複素積分を行い、 ∫( z^n / (z - 1)^n )dz の値を求めよという問題がわかりません。 |z - 1| = 1より、 C : z = 1 + exp(iθ) であり、線積分の公式 ∫{C} f(z)dz = ∫{a→b} f(z(t))z'(t) dt (ただし、{}は積分範囲) という公式を当てはめると、 ∫{π→0} ( (1 + exp(iθ))^n/(exp(iθ))^n ) × iexp(iθ) dθ と考えたのですが、この積分を解くことができません。それとも、それ以前で間違えているのでしょうか? わかる人がいれば詳しく教えていただけるとありがたいです。回答よろしくお願いします。

  • 積分値を複素関数を使って求める

    お世話になります。 【問題】 実変数θに対する下記の積分値を、複素関数を使って求めよ。 ∫[ 0 → 2π ]1 / ( 5 - 3cosθ )^2 dθ 【自分の解答】 オイラーの公式より cosθ = ( exp( iθ) + exp( -iθ ) ) / 2 これを与式に代入して ∫[ 0 → 2π ]1 / ( 5 - 3 ( exp( iθ) + exp( -iθ ) ) / 2 )^2 dθ = (*) ここで z = exp( iθ) + exp( -iθ ) とおくと dθ/ dz = 1 / (dz / dθ) = 1 / iz ∴dθ= ( 1 / iz )dz また θ:0 → 2π z :2 → 2 よって (*) = ∫[2 → 2]1 / ( 5 - 3z / 2 )^2 ( 1 / iz )dz (ここから不明) 【質問】 上記のやり方では積分範囲が2 → 2となり被積分関数がどんなものであろうとその積分値は0になってしまいます。 私の解答は間違っていると思うのですが、何が間違っているのか、どうすれば正しくなるのかがわかりません。 どなたかご教授よろしくお願いします。

  • 複素積分について

    ∫[0→2π]dθ/(a+bcosθ)の値を求めよという計算です。 z=exp(iθ)とおくと、、 またcosθ=(1/2)(z+1/z)となるので、 この積分は、 2/i∫1/(bz^2+2az+b)dz となり、bz^2+2az+b=0の根が特異点となるので、 その根をα、βとおくと、 2/i∫1/(z-α)(z-β)dzとなったのですが、 答えを見ると、 2/ib∫1/(z-α)(z-β)dz となっています。 分母にbがあるのですが、このbはどっからきたのでしょうか?

  • 複素積分の問題

    複素積分の問題 次の複素積分の問題が分かりません. アドバイスいただけたら幸いです. 次の複素関数について以下の問に答えよ f(z) = z^-c / ( 1+z ) ただし、0<c<1 (1)複素平面上におけるf(z) の全ての特異点を求めよ (2)図中の閉曲線をγとする閉曲線γの矢印にそった向きの「周回積分」 ∫γ f(z)dzを求めよ γRは半径(R>1)の円し,γrは半径(r<1)の円を表す (3)z=R exp(iθ)またはr=R exp(iθ) (0<θ<2π)とおくことにより, 曲線及び曲線に沿った「周回積分」の絶対値 │∫γR f(z)dz│および、│∫γr f(z)dz│ がR→∞、r→0の極限において0に収束することを証明せよ (4)以上の結果を用い、次の「積分」 ∫(0→∞) x^-c / ( 1+x ) dx = π/ (sinπc) を証明せよ

  • 複素積分∫[c]{cos(z)/z^4}dz C:|z|=1 ついて

    複素積分∫[c]{cos(z)/z^4}dz C:|z|=1 ついて |z|=1 よりz=cosθ+isinθ とおきました。 すると、dz/dθ=-sinθ+icosθ、cos(z)/z^4 の分母は z^4=(cosθ+isinθ)^4 とうまくいくのですが、分子のcos(z)=cos(cosθ+isinθ)となり、上手く進みません。 ぜひ、アドバイスの程よろしくお願い致します。

  • 複素解析の問題

    線分z=t*e^(π/4*i) (0≦t≦r)にそった ∫_C e^(-z^2)dzの積分の実部を、cos(t^2)とsin(t^2)を使って表せ この問題の答えは 1/√2(∫[0,r] cos(t^2)+sin(t^2) dt) で合っていますか?