• ベストアンサー

複素解析の問題

線分z=t*e^(π/4*i) (0≦t≦r)にそった ∫_C e^(-z^2)dzの積分の実部を、cos(t^2)とsin(t^2)を使って表せ この問題の答えは 1/√2(∫[0,r] cos(t^2)+sin(t^2) dt) で合っていますか?

質問者が選んだベストアンサー

  • ベストアンサー
  • info222_
  • ベストアンサー率61% (1053/1707)
回答No.1

>この問題の答えは >(1/√2)∫[0,r] {cos(t^2)+sin(t^2)} dt で合っていますか? 括弧のつけ方を上記のようにすれば 合っています。

toetoetoe13
質問者

お礼

回答ありがとうございました。

関連するQ&A

  • 複素積分

    複素積分の問題です。 ∫z*cos(z)dz 積分路:|z-i/2|=1/2のRez≦0の部分をiから0の向き z(t)=1/2cos(t)+(1/2)*i*(sin(t)+1/2)、t∈[π/2,3π/2]で変換して z(t)=(e^it)/2+i/4として代入してみると ∫{(e^it)/2+i/4}cos{(e^it)+i/4}*{i(e^it)/2}dt 積分範囲はt:π/2→3π/2 となりました。 この積分の計算がなかなかうまくいかず行き詰ってしまって困っています。 そもそも方針は合っているのでしょうか…? どなたかわかる方おられましたら回答お願いいたします。

  • 複素解析の問題です

    (1)次の複素数zに対して、e^(z)の実部と虚部を求めよ。 z=3+(2/3)*pi*i (2)z=25iのときにsin(z),cos(z),tan(z)の実部と虚部を求めよ。 (3)加法定理 cos(z+w)=cos(z)cos(w)-sin(z)sin(w)を示せ。 (複素三角関数) (4) |sin(z)|≦1は成り立つか。  成り立つならば証明せよ。  成り立たない場合はその例を挙げよ。 困ってます。誰かお願いします。

  • 複素積分の問題について。

    複素積分の問題を解いてみたのですが、手元に答えがないうえに合っているか自信がないので、チェックしていただけると助かります。解法に誤りがあったらどうぞ指摘してください。自分の中では、留数の求め方が怪しいです。 以下、積分の経路Cは原点中心半径8の円で正の向きとします。 (1)∫ 1/sin(z) dz (2)∫ 1/(1-cos(z)) dz (3)∫ (1+z)/(1-e^z) dz (4)∫ tan(z) dz (1)∫ 1/sin(z) dz f(z)=1/sin(z) について、f(z) は z=mπ で特異点をとり、特にCの内部では z=0,±π,±2π が特異点となる。 ここで各点における留数を求めると、 Res(0)=1 Res(π)=-1 Res(-π)=-1 Res(2π)=1 Res(-2π)=1 となるので、 ∫ 1/sin(z) dz=2πi(1-1-1+1+1)=2πi (2)∫ 1/(1-cos(z)) dz f(z)=1/(1-cos(z)) について、f(z) は cos(z)=1、つまり z=2mπ で特異点をとり、特にCの内部では z=0,±2π が特異点となる。ここで f(z) を z=0 のまわりで展開すると、 f(z)=1/(1-1/2(z^2)+1/24(z^4)-・・・) =1/(1/2(z^2)-1/24(z^4)+・・・) であることから、Res(0)=0 同様に、Res(π)=0,Res(-π)=0 なので、 ∫1/(1-cos(z)) dz=2πi・0=0 (3)∫ (1+z)/(1-e^z) dz f(z)=(1+z)/(1-e^z) について、f(z) は z=2πim(mは整数)で特異点をとり、とくにCの内部では z=0,±2πi で特異点となる。ここで、 Res(0)=-1 Res(2πi)=-1-2πi Res(-2πi)=-1+2πi となるので、 ∫(1+z)/(1-e^z) dz=2πi(-1-1-2πi-1+2πi)=-6πi (4)∫ tan(z) dz f(z)=tan(z)=sin(z)/cos(z) について、f(z) は z=(2m+1)π/2 で特異点をとり、特にCの内部では z=±π/2、±3π/2,±5π/2 で特異点となる。ここで、 Res(±π/2)=-1 Res(±3π/2)=-1 Res(±5π/2)=-1 となるので、 ∫tan(z) dz=2πi・(-6)=-12πi

  • 複素積分の初歩的な問題の解き方について

    教科書からの問題ですが答えが省略されているのでわかりません。 問、C={z||z|=1}とするとき、次の積分の値を求めよ。 (1), ∫[径路;C](z-2)dz (2), ∫[径路;C](z-2)|dz| の2問です。 答え、 題意|z|=1より Cは原点を中心とした半径1の円周上である。 (1), z=rexp^(iθ) とおき θをパラメータとする。 ∴dz=irexp^(iθ)*dθ ここで r=1 ∴∫[径路;C](z-2)dz=∫[θ;0→2π]{exp^(iθ)-2}iexp^(iθ)*dθ=i∫[θ;0→2π]exp^(i2θ)*dθ-2i∫[θ;0→2π]exp^(iθ)*dθ=0 (2), z=rexp^(iθ) ∴z=r(cosθ+isinθ) ここで r=1 ∴dz=(-sinθ+icosθ)dθ ∴|dz|=√{(-sinθ)^2+(cosθ)^2}dθ=dθ ∴∫[径路;C](z-2)|dz|=∫[θ;0→2π]{exp^(iθ)-2}dθ =∫[θ;0→2π]exp^(iθ)*dθ-∫[θ;0→2π]2*dθ=4π 以上私のやり方と答えでよいのでしょうか? それと、式中の絶対値符号の間隔をもっと狭く表示する方法が分かりません。なにか特別な方法があるのでしょうか?

  • 複素解析の質問です

    複素解析の質問です ∫_c {1/(1+z^2)}dz c:z(t)=2e^it このような積分の値を求めるときどのように求めればいいのでしょう この問題の具体的な答えではなく、解き方の方向性?が知りたいです。 お願いします。

  • 複素積分、積分路に関する問題が解けなくて困っています。

    複素積分、積分路に関する問題が解けなくて困っています。 来年大学院受験です。 問題は http://www.i.u-tokyo.ac.jp/edu/entra/pdf/archive/10math-j.pdf の第2問です。 (1)不定積分はすぐに解けるのですが、 (2)の積分経路はどうしていいかわかりません。 自分の途中までの回答としては、 (1)はtan^(-1)x + C, (1/2)*log(x^2+1) + C (2)はS1,S2,S3,S4の経路をそれぞれ z(t)=1+it (-1≦t≦1) z(t)=-t+i (-1≦t≦1) z(t)=-1-it (-1≦t≦1) z(t)=t-i (-1≦t≦1) とし、それぞれtで微分すると、 dz=idt dz=-dt dz=-idt dz=dt となり、それぞれ、 I_1 = ∫(-1~1) 1/(1+it-(a+ib)) * idt I_2 = ∫(-1~1) 1/(-t+i-(a+ib)) * -dt I_3 = ∫(-1~1) 1/(1+it-1-it-(a+ib)) * -idt I_4 = ∫(-1~1) 1/(t-i-(a+ib)) * dt という風に表せると思いますが、 ここでI_1は定積分すると log|(i+1-a-ib)/(-i+1-a-ib)|となりましたが、このままでいいのでしょうか? 何かもう少し変化させたりとかできないのでしょうか? 少々行き詰ってしまったので、指標をいただければ嬉しいです。 よろしくお願いいたします。

  • 複素積分について

     複素数cと実数ξとし、       f(z)=(e^(iξz))/(z-c) という複素関数を考えます。  lr={z=t ; -r<t<r} 、Cr+={z=re^(it) ; 0≦t≦π} 、 Cr-={z=re^(-it) ; 0≦t≦π} として、lrとCr+を合わせた曲線をγ+、lrとCr-を合わせた曲線をγ-とします。  ここで、  (1)Im c≠0、|c|<rとしたとき、f(z)のγ+、γ-上の積分  (2)Im c≠0、ξ≠0のとき、実軸上の積分、          ∫[-r,r] f(x)dx , r→∞ という問題なのですが、(1)については、  )Im c>0のとき    γ-上の積分の積分は、Cauchyの積分定理により、∫[γ-] f(z)dz=0。    また、γ+上の積分は、留数定理により、∫[γ+] f(z)dz=2πie^(iξc)。  )Im c<0のとき    γ+上の積分の積分は、Cauchyの積分定理により、∫[γ+] f(z)dz=0。    また、γ-上の積分は、留数定理により、∫[γ-] f(z)dz=2πie^(iξc)。  となると思うのですが、これで大丈夫なのでしょうか? また、(2)については、  ∫[γ+] f(z)dz + ∫[γ-] f(z)dz =∫[Cr+] f(z)dz +∫[Cr-] f(z)dz+2∫[lr] f(x)dx と考えたのですが、左辺については、Im cの符号によらず4πie^(iξc)となると思いますが、右辺については、よくわからなくなってしまいました。どのようにして、考えていけばよいのでしょうか?どなたかお力添えよろしくお願いします。  読みにくい文章で申し訳ないのですが、よろしくお願いします。

  • 複素積分

     Cauchyの積分定理の応用に関する問題(Fresnel積分)に関してですが、テキストなどでは、積分路を扇にとって積分していますが、これを二等辺三角形にして考えています。  まずf(z)=e^(iz^2)として、積分路Cを0,R,(1+i)Rを頂点とする直角二等辺三角形の周とします。ここで、C上の積分∫f(z)dxを考えて、Fresnel積分を導きたいのですが、一部積分評価がわからないところがあり、質問させていただきました。  積分路CをC1(0→R)、C2(R→(1+i)R)、C1((1+i)R→0)、として考え、各積分路の積分をI1,I2,I3とすると、Cauchyの積分定理より、   ∫f(z)dx=I1+I2-I3=0 となり、I1,I3については問題ないのですが、I2の積分評価がうまくできません。  C2をパラメータtを用いて、z=R+it,(0≦t≦R)とすれば、   I2=i∫[0,R] e^(i(R+it)^2) dt    =i∫[0,R] e^{i(R^2-t^2)-2Rt} dt  ----(*) となり、(*)式の積分評価がよくわかりません。R→∞としたとき、I2→0となるのですが、どうやって導いたらよいのでしょうか?どなたか教えていただけないでしょうか?できれば、詳しく教えていただけると大変助かります。  大変読みづらいかもしれませんが、よろしくお願いします。

  • 複素関数の周積分の問題です。

    問題は次の二つです。  ∫dz/(z-3i) 積分経路は |Z|=π で反時計まわり。  ∫(exp(z)/z)dz 積分経路は |Z|=2で反時計と|Z|=1で時計まわり。  初めの問題はコーシーの積分定理を使えば2πiになるのは、理解できるのですが、積分定理を使わずに与えられた積分経路で積分をしていった所(z(t)=πexp(it)とした。)、[log|πexp(it)-3i|] tの区間0~2π となりこれを計算すると0になってしまいました。なぜ答えが違うのでしょうか。 二番目の問題もコーシーの積分定理を使って二つとも同じ原点を中心とした半径rの円の積分経路に置き換えれば、0になることはすぐわかるのですが、定理を使わずに計算していった所∫iexp(exp(it))dtや∫iexp(2exp(it))dtといった項が出てきてこれが計算できないのです。この問題は大人しく定理を使わなければ解けない問題なのでしょうか。 以上の2点が分からず困っています。どなたかお力をお貸しください。 よろしくお願いします。

  • 複素積分の問題

    複素積分の問題 次の複素積分の問題が分かりません. アドバイスいただけたら幸いです. 次の複素関数について以下の問に答えよ f(z) = z^-c / ( 1+z ) ただし、0<c<1 (1)複素平面上におけるf(z) の全ての特異点を求めよ (2)図中の閉曲線をγとする閉曲線γの矢印にそった向きの「周回積分」 ∫γ f(z)dzを求めよ γRは半径(R>1)の円し,γrは半径(r<1)の円を表す (3)z=R exp(iθ)またはr=R exp(iθ) (0<θ<2π)とおくことにより, 曲線及び曲線に沿った「周回積分」の絶対値 │∫γR f(z)dz│および、│∫γr f(z)dz│ がR→∞、r→0の極限において0に収束することを証明せよ (4)以上の結果を用い、次の「積分」 ∫(0→∞) x^-c / ( 1+x ) dx = π/ (sinπc) を証明せよ