• ベストアンサー

部分が全体に等しいのが無限であるとすると・・・

タイトルのような記述に遭遇しましたが、微積分などでも導関数や原始関数は元の関数に対して部分と全体の関係として等しいと考えられるのでしょうか。

質問者が選んだベストアンサー

  • ベストアンサー
  • sunasearch
  • ベストアンサー率35% (632/1788)
回答No.1

部分というのは、基本的に同じ次元の中で考えます。 ある領域の一部であれば、たとえば面積として[m^2]などの次元が存在して、全体も部分も同じ次元で表されます。 しかし、微積分を行なうことは次元を変えます。 たとえば、距離[m]を時間で微分すると速度[m/s]になります。 次元が変わると、全体と部分という関係にはならないと思います。

kaitaradou
質問者

お礼

早速ご回答ありがとうございます。もう少し勉強してみます。

その他の回答 (1)

  • ken1tar0u
  • ベストアンサー率24% (21/86)
回答No.2

御質問の答えとしてはすでに #1 さんが書かれたとおりです。以下参考情報。 「部分が全体に等しいのが無限であるとすると」という表現だけを取り出すと誤解を招きますね。この言葉は無限集合の定義に出てきます。 ある集合 A が無限集合である(A の要素の数が無限である)とは、A の真部分集合 B を上手に選ぶと、A とB との間に1対1の上への対応が作れることである。 というものです。「1対1の上への対応」というのは、例えば、お皿数枚 の集合 A とみかん数個の集合 B があるとき、お皿1枚の上にみかんをちょうど1個だけ乗せて行く。そして皿にみかんを全部乗せ終わり、みかんの乗ってない皿も無いし、皿に乗ってないみかんも無いとき、1対1の上への対応が付いた、と言います。有限集合であれば「A と B は要素の数が同じだ」という当たり前の意味になります。 無限集合の場合、例えば Z:整数全体の集合; G:偶数全体の集合 としますと、G は Z の真部分集合ですが、Z の要素 k に対して G の要素 2*k を対応させれば、Z にも G にも余り無く対応付けることができます。つまり1対1の上への対応ができます。誇張して言えば「部分と全体の個数が同じ」! これが無限集合の特徴、と言うより本質なわけです。

kaitaradou
質問者

お礼

おかげさまで無限というものがあるらしいというような感じがしてきました。ありがとうございました。

関連するQ&A

  • 部分分数分解について

    有理関数の原始関数を求める(積分する)ときに、その有理関数を部分分数分解するケースがあると思います。 この部分分数分解はある程度センスでやるものですか? 部分分数に分解する手順等があれば教えてほしいです。 よろしくお願いします。

  • 全体は部分の総和ではない

    数学の本を探しています。 そもそも、数字とは何か。 1+1=2になるのは、なぜか。 微分、積分とは、どんな意味があるのか。 全体は部分の総和ではない、に対して、数学はどう考えるのか? 色々検索してみましたが、見つかりません。 数式の少ないもの、宜しくく願いします。

  • 積分

    授業中に問題で、「定積分を求めるのに何故不定積分が使えるのか」というのが出ました。両者とも被積分関数を積分したら原始関数になるので、という風に答えたのですが、いまいちよく分かりません。 どなたか教えて下さい。

  • cos^2・x・dx原始関数を求める問題

    (cos^2)xdx 上の原始関数を求める問題なのですが f\'=cosx, g=cosと置いて部分積分法で求めようとしましたが、途中で分からなくなりました。 そもそも部分積分法使用するのが間違ってるのでしょうか? 解き方と解答をお教えください。

  • 組み合わせの全体と部分集合の全体は等しいか?

    「組み合わせの全体」と「有限集合の部分集合の全体」は等しいと感じますが,この事に関する「証明」または「定理」は存在するでしょうか? ご存じの方,教えて下さい. 以下が質問の内容の詳細です. 正の整数を,1, 2, 3, ....., n-1, n とします.この n個の正の整数の組み合せ(重複は許さない)の総数 N は, N=Σ[r=1→n] n!/(r!(n-r)!)= =n!/(1!(n-1)!) + n!/(2!(n-2)!) + n!/(3!(n-3)!) +・・・+ n!/((n-1)!(n-(n-1))!) + n!/(n!(n-n)!) =(2^n)-1 ですから, N=(2^n)-1 です. そして,組み合せの全体そのものは, (1),(2),・・・,(n-1),(n), (1,2),(1,3),・・・, (2,3),(2,4),・・・, (1,2,3),(1,2,4),・・・, (2,3,4),(2,3,5),・・・, (1,2,3,4),(1,2,3,5),・・・, (2,3,4,5),(2,3,4,6),・・・, ・・・・・, (1,2,3,4,・・・,n-1,n) となります. 次に,有限集合を S = {1, 2, 3, ....., n-1, n} とします. n は正の整数です.S の部分集合(真部分集合でない,かつ,空集合は除く)の全体は, {1},{2},・・・,{n-1},{n}, {1,2},{1,3},・・・, {2,3},{2,4},・・・, {1,2,3},{1,2,4},・・・, {2,3,4},{2,3,5},・・・, {1,2,3,4},{1,2,3,5},・・・, {2,3,4,5},{2,3,4,6},・・・, ・・・・・, {1,2,3,4,・・・,n-1,n} となります. これらの S の部分集合の全体は,集合の元の構成が組み合せの全体と等しいですか? 分かる方,教えて下さい.お願いします.

  • 部分積分の直感的な理解

    部分積分の公式を、関数の積の微分の公式から導くのではなく、 部分積分の公式そのものから直接的にすぱっと理解する方法はないでしょうか? 物理の計算とかで、部分積分を使う場面がよくありますが、「部分積分すると」という表現に出くわすと、妙にはぐらかされた気分になるのです。

  • 微分と積分は逆の演算ということですが、

    微分と積分は逆の演算ということですが、 この関係を 導関数:原関数=原関数:原始関数と表現して導関数と原始関数の積は原関数の二乗に等しいというような空想の先に何かまともな結果があるでしょうか。せめて比例とか、積という概念に対するより良い理解を与えてくれるというようなこともないでしょうか。2x、x^2、x^3/x^3を例にしてもこの空想が誤りですし、意味がないことは自明なのですが・・・

  • 「微分」と「導関数」  「不定積分」と「原始関数」

    高校で授業をしていてふと疑問に思ったことです。 手元の高校の教科書(数研)では「導関数を求めること」を「微分する」と表現していて、 「微分」という言葉は演算を表す動詞で、その結果を表す名詞(?)ではないようなのですが、 f(x)に対してf'(x)のことを「fの微分」とも呼びませんでしたっけ? 同じように積分に関してなんですが、 教科書では「F'(x)=f(x)であるF(x)をf(x)の不定積分または原始関数という」となっているんですが、 この「不定積分」と「原始関数」ってもともと別に定義していたように思うのです。 どうも、用語の使い分けが混乱しているので、  「微分」と「導関数」  「不定積分」と「原始関数」 この正式な使い分けについて、教えてほしいのです。 もっとも、高校ではあまり厳密にうだうだ言ってもかえって混乱するので、ある程度で流すわけですが。。。 よろしくお願いします。

  • 微分と積分の関係がわかりません

    微分と積分は逆の計算というのは知ってます。高校の時に習いました。 ただ、なぜこれらが逆の計算になるのかわかりません。 高校の時の教科書を出してきて読み直してみましたが、「微分と積分は逆の関係であり・・」というところから始まっていて原始関数やらなんやらと展開していって、「なぜ微分と積分が逆の計算なのか」というのが分かりません。 なんでも元々は両者はまったく無関係に発展してきて、ニュートンがこの関係を発見したとか・・ これは完全に偶然だったのでしょうか? それとも、よく考えれば当たり前なのをニュートンが発見したということなのでしょうか?

  • 有限要素法の手順とその原理に関する初歩的な質問

    有限要素法という数値計算の方法は、まず方程式(A=B)があって、それをA-B=0とし、任意の重み関数ωを乗じて方程式の成立する範囲で積分(∫ω(A-B)dA=0)し、さらにそれを部分積分し、面積分(領域全体の)と線積分(境界上の)とします(弱形式)。そして、領域全体を細かく分割した有限要素内部での未知変数(重み関数も)を内挿関数とそれらの節点値(三角形だったら基本3個とか)を使って内挿して表現し、求めた式に代入してωiでくくって代数方程式を作り、それを全体マトリックスとして組み上げて行列計算を行う、というものだと思います(ガラーキン法: 汎関数と変分法を使うリッツ法と等価になる?)。式を使わず言葉で長々と書きましたが。そういう風に理解しています。(間違っているかもしれませんが)。この一連の流れの中でどうしても1つ腑に落ちないところがあります。それは部分積分のところです。この部分積分は必須なのでしょうか。部分積分をすることによって境界積分が生じるので境界条件を課するのにちょうどいいからということなのでしょうか。部分積分をしないと先に進めないというところがやや理解しずらいのですが。よろしくお願いします。