• ベストアンサー

高1★高次不等式

Rossanaの回答

  • Rossana
  • ベストアンサー率33% (131/394)
回答No.3

どうしてa>2,a=2,a<2で場合分けをするかですが, a≠2⇒f(x)=(x+1)(x-2)(x-a):3点でx軸と交わる a=2⇒f(x)=(x+1)(x-2)(x-a)=(x+1)(x-2)^2:1点でx軸と交わり1点でx軸と接する のように形状が異なるからです. また,このように考えてもいいですよ. 例えば,a=2をa>2にまとめてa≧2として,この場合に含めてしまえば x≦-1, 2≦x≦2 となります. でも 「2≦x≦2」 とは書かず,これは 「x=2」 と書きますよね. 表記が異なるから分ける必要があると考えてもいいかもしれません.

MarinYorkie
質問者

補足

エックス軸に3点で交わる図を書いたことがないので・・・イメージが全くつかめません。(申し訳ないです) なぜ『2』という数字が出てきて場合分けされるのかがわからないです。

関連するQ&A

  • 数1 不等式

    不等式がちっともわからないのでアドバイスお願いします。 ※2乗は~で表させていただきます xの不等式 x~2-2x≦0ー(1)       x~2-ax-2a~2ー(2)  (aは定数) 1、不等式(1)を解いて下さい これは 0≦X≦2でいいと思うんですが。 2、0<a<1のとき、不等式(2)を求めてください、また不等式(1)、(2)を同時に満たすxの値の範囲を求めてください 全然解らないです((汗 3、不等式(1)、(2)を同時に満たすxの整数値がちょうど2個存在するときaのとりうる値の範囲を求めてください よろしくお願いします。

  • 不等式の解き方がわかりません

    xについての3つの不等式 2x+1/3 ≧ 9x-2/12 - x+5/4 ・・・(1) 2x+6 > √7x ・・・(2) ax-a < aの二乗 ・・・(3) がある。ただし aは0でない定数である。 (1) 不等式(1)を解け。 (2) 不等式(1)、(2)をともに満たす整数xは全部で何個あるか。 (3) 不等式(1)、(2)、(3)をすべて満たす整数xがちょうど11個存在するようなaの値の範囲を求めよ。      上記問題の解き方がまったくわかりません。よろしくお願いします。

  • 不等式の解き方がわかりません

    xについての3つの不等式 (2x+1)/3 ≧( 9x-2)/12 - (x+5)/4 ・・・(1) 2x+6 > √7x ・・・(2) ax-a < aの二乗 ・・・(3) がある。ただし aは0でない定数である。 (1) 不等式(1)を解け。 (2) 不等式(1)、(2)をともに満たす整数xは全部で何個あるか。 (3) 不等式(1)、(2)、(3)をすべて満たす整数xがちょうど11個存在するようなaの値の範囲を求めよ。      上記問題の解き方がまったくわかりません。よろしくお願いします。    (1)についてカッコをつけて分子、分母をわかりやすくしました。

  • 2つの不等式

    aを正の定数とするとき、2つの不等式 {x^2-2x>0 {x^2-3ax+2a^2<0 を同時に満たす整数xが存在しないaの値の範囲を求めよ。 途中式が分かりません。 この2つの式は連立不等式として解けばいいってことですか? でももし連立不等式だったら、上の式はただのx なのに、下のは2乗で、今まで学校やった連立不等式 ではみたことないものです。 答えは0<a≦2分の3になるそうです。 お願いします。

  • 数学 不等式

    xについての二次方程式 xの二乗+(a-1)x-aの二乗+a=0 の一つの解がー2とー1の間にあり、他の解がー1と1との間にあるとき、定数aの範囲を求めよ。 で、(1)f(-2)>0   (2)f(-1)<0 (3)f(1)>0 になるんですが(1)~(3)の不等式をといてaの範囲を求めるんですがどうやって解けばいいのですか?

  • 高一ですが、「不等式の解」の発展について教えてください

    高一なのですが、定期テストが近づいているのですが、 不等式の解の問題がわかりません教えてください 問 不等式 2x+a<5(x-1)を満たすxのうちで、   最大の整数が4であるとき、定数aの値の範囲を求めよ 答 7<a≦10 2x+a<5x-5 これを満たすxのうちで、最大整数が4であるための 条件は 4 <a+5/3{三分の(a+5)}≦5らしいですが 自分の考えでは 4≦a+5/3<5ではないのかと思うのですがどうなんでしょう? 説明力不足で申し訳ありませんが どなたか回答お願いします。

  • 不等式

    下記の問題の解答の過程と答えを教えて下さい。  すべての実数Xに対して、次の不等式が成り立つような定数mの値の範囲を定めよ。 (m+2)X2乗 + 2mX + 2m - 1>0

  • 【高次方程式の解法】

    実数の間の等式(5√2+7の3乗根)-(5√2-7の3乗根)=2…(*) (1)係数が整数であるxの3次方程式で、x=(5√2+7の3乗根)-(5√2-7の3乗根)が 解になるものを1つ求めよ。 (2)(1)で求めた3次方程式を解くことにより、等式(*)を証明せよ。 (1)はx^3してみたんですが…いまいち分かりません (2)はノータッチです…。 数学が得意な方、お願いします!

  • 不等式の証明について

    0<x<π/2 のとき次の不等式を証明せよ。 log(cosx)+x2/2 <0 この問題分かる人いませんか? いらっしゃったらおしえてくれませんか? よろしくお願いします。 ちなみにx2とはxの二乗のことです。

  • √の不等式の解き方

    すべての実数xに対してlog(x+√x^2+1)を考える。 という問題があったのですが、問題文をしっかり読まないで、真数条件とかを確かめてしまいました。まあそれは置いておくことにして、この問題においてxの範囲が明記されてない場合、真数条件ならびに(√内部)≧0というのを調べることになると思うのですが、√が入った不等式はどのように解けばよいのでしょうか? この場合√内部が正は明らかですから真数条件からx+√x^2+1>0を示すことになります。そうすると第2項は正と分かっているので第1項についてのみ考え、結局x>0ということになるのでしょうか?仮にこの考え方があっていたとしても、他の全ての場合(√の入った不等式の解法)に通用するでしょうか? 例えば方程式の場合√だけの項を片側に移項して両辺二乗すれば√は消えて普通に解けます。(ところで二乗できるのは両辺が正だと言い切れる場合だけですよね?)不等式でもこのように二乗の考え方で解いたりするのでしょうか? 今更ですが、もしかすると√以前に不等式の解き方が理解できていないのかもしれません。こんなレベルですがアドバイスよろしくお願いします。