guuman の回答履歴

全719件中81~100件表示
  • 多項式の既約性

    次の多項式がQ上既約であることを示せ。 (1) x^5 + 5x^3 + 10 (2) x^(p-1) + x^(p-2) + … x + 1  ( p は素数) (3) x^4 + 1 (4) x^6 + x^3 + 1 以上です。 (1)はアイゼンシュタインの定理を用いれば示せたのですが、 (2)以降に苦しんでいます。 (2)に関しては、x±1で割り切れないことを言えればいいのかな、 と考えたりもしたのですが、いまいち納得できません。 どなたかわかる方、よろしくお願いします。

  • 多項式の既約性

    次の多項式がQ上既約であることを示せ。 (1) x^5 + 5x^3 + 10 (2) x^(p-1) + x^(p-2) + … x + 1  ( p は素数) (3) x^4 + 1 (4) x^6 + x^3 + 1 以上です。 (1)はアイゼンシュタインの定理を用いれば示せたのですが、 (2)以降に苦しんでいます。 (2)に関しては、x±1で割り切れないことを言えればいいのかな、 と考えたりもしたのですが、いまいち納得できません。 どなたかわかる方、よろしくお願いします。

  • 逆ラプラス変換の求め方でアドバイス下さい(簡易説明法)

    逆ラプラス変換の求め方ですが、正式にはフーリエ変換で求めるようですが、しかし私にはかなりレベルが高くピンときません。そこで、簡便法ですが下記でも求められそうです。(一つの考え方というレベルでのことですが) しかし、6)の「式としては lim[x -> 0] は lim[x -> t] (t は >=0 の任意の値) としても成り立つ・・・」というところですがラプラス変換は ∫[0~∞] の定積分ということとマッチしてないような気がします。 たぶんこの求め方自体が邪道(数学的にはかなりいいかげんな気がしてます、また本当に正しいかどうかさえ私のレベルではわかりません)の類のような気がしてますが、簡易説明法の類としてもう少しましな物にならないかな・・・ということで詳しい方にお尋ねします。 ------------------------------ L;ラプラス変換 e^(st);e f(t);f IL;逆ラプラス変換 'n ; n回微分 と省略します。 1) ラプラス変換は、 L = ∫[0~∞] f/e dt の定積分ですが とりあえず f の式形を残したいので不定積分します。(以下 dt は省略) 2) これを部分積分しますと、L = ∫f/e = -f/es + ∫f '/es = -f/es + L'/s となります。 L'を順次展開して L = -Σ[n = 0~∞] f 'n / es^(n+1) と無限級数とすることにより L'n をとり除くことができます。 3) ここで、ラプラス変換は定積分なので、これはとりあえず積分範囲の下限 0 を可変にして x とおくと, L変換できる関数は、上限の∞では f(∞)/se^(s∞) =0 ですので L = lim[x -> 0] {+Σ[n = 0~∞] f 'n (x)/ ( e^(sx)s^(n+1) )} となります。 4) 逆変換は線積分で、 IL = (1/2πi)∫[γ- i∞ ~γ+ i∞] e^(st)L ds これは留数ですので周積分でも求めることができます、(以下ds は省略)またL中の x は可変ですので (ILでのt) = x として以下省略します。 IL = (1/2πi)∫eL = (1/2πi) lim[x -> 0] {+Σ[n = 0~∞] ∫f 'n / s^(n+1)} 5) f 'n はdsには無関係で、また留数は n = 0 以外は 0 なので. 結局 IL = (1/2πi) lim[x -> 0] f∫1/ s 、s = e^(iΘ)とすると、 ds/dΘ = is 、 IL = (1/2πi) lim[x -> 0] f∫[0,2π] is/s dΘ = lim[x -> 0]f(x) 6) 式としては lim[x -> 0] は lim[x -> t] (t は >=0 の任意の値) としても成り立つのでIL = f(t) とすることができる・・・のかな? 無理やりにでもこじつければ、t のすべての範囲で式形が同じなので・・・・とでも言えば何となくそうも思えるのですが・・・私のレベルでは頭がこんがらがってお手上げになってしまいました。

  • 線形代数

    つぎの問題の答えの部分でわからないことがあります 問題は Mをm*nの行列、Nをn*mの行列とする。ただしm>nとする。 このときMNの固有多項式fMN(λ)とNMの固有多項式fNM(λ)との間に fMN(λ)=λ^(m-n)fNM(λ) なる関係があることを証明せよという問題で その答えが M1=[M:0],N1=[N ] 左このように m*mの行列にする     0 とおいてfM1N1(λ)=|λE-M1N1|=det(λE-MN)と書いてあったのですが どうしてこうなるのかわかりません。 紙に書いてやってみたのですがどうしてこれがイコールになるのかがわかりませんでした。簡単なことなのかもしれませんがどなたかお願いします。

  • 微分方程式

    微分方程式の特殊解のおき方がわかりません y"+y=secx 同時微分方程式を解くと y=c1cosx+c2sinx となるところまでできるのですが ここから y(x)=Acosx+Bsinx とおいて計算してもうまくいきません お願いします

  • 複素解析(ローラン展開、線積分)

    2問あるのですが、アドバイス、解答の糸口をお願いします。 1. Cを単位円正の方向一周とするとき、この積分路について以下の積分を求めよ。 ∫|z-1||dz| |dz|はどのようにすれば積分実行が可能になるのでしょうか? 2. 次の関数の位数および留数を求めよ。 1/(z*sinz) 2.はsinzについてテイラー展開を行うのかと思いましたが、それだと通分ができず、各項を独立させられなくなり、分からず仕舞いになってしまいました。。。

  • 複素解析(ローラン展開、線積分)

    2問あるのですが、アドバイス、解答の糸口をお願いします。 1. Cを単位円正の方向一周とするとき、この積分路について以下の積分を求めよ。 ∫|z-1||dz| |dz|はどのようにすれば積分実行が可能になるのでしょうか? 2. 次の関数の位数および留数を求めよ。 1/(z*sinz) 2.はsinzについてテイラー展開を行うのかと思いましたが、それだと通分ができず、各項を独立させられなくなり、分からず仕舞いになってしまいました。。。

  • 多項式の既約性

    次の多項式がQ上既約であることを示せ。 (1) x^5 + 5x^3 + 10 (2) x^(p-1) + x^(p-2) + … x + 1  ( p は素数) (3) x^4 + 1 (4) x^6 + x^3 + 1 以上です。 (1)はアイゼンシュタインの定理を用いれば示せたのですが、 (2)以降に苦しんでいます。 (2)に関しては、x±1で割り切れないことを言えればいいのかな、 と考えたりもしたのですが、いまいち納得できません。 どなたかわかる方、よろしくお願いします。

  • 複素解析(ローラン展開、線積分)

    2問あるのですが、アドバイス、解答の糸口をお願いします。 1. Cを単位円正の方向一周とするとき、この積分路について以下の積分を求めよ。 ∫|z-1||dz| |dz|はどのようにすれば積分実行が可能になるのでしょうか? 2. 次の関数の位数および留数を求めよ。 1/(z*sinz) 2.はsinzについてテイラー展開を行うのかと思いましたが、それだと通分ができず、各項を独立させられなくなり、分からず仕舞いになってしまいました。。。

  • 複素解析(ローラン展開、線積分)

    2問あるのですが、アドバイス、解答の糸口をお願いします。 1. Cを単位円正の方向一周とするとき、この積分路について以下の積分を求めよ。 ∫|z-1||dz| |dz|はどのようにすれば積分実行が可能になるのでしょうか? 2. 次の関数の位数および留数を求めよ。 1/(z*sinz) 2.はsinzについてテイラー展開を行うのかと思いましたが、それだと通分ができず、各項を独立させられなくなり、分からず仕舞いになってしまいました。。。

  • 微分方程式

    微分方程式の特殊解のおき方がわかりません y"+y=secx 同時微分方程式を解くと y=c1cosx+c2sinx となるところまでできるのですが ここから y(x)=Acosx+Bsinx とおいて計算してもうまくいきません お願いします

  • 微分方程式

    微分方程式の特殊解のおき方がわかりません y"+y=secx 同時微分方程式を解くと y=c1cosx+c2sinx となるところまでできるのですが ここから y(x)=Acosx+Bsinx とおいて計算してもうまくいきません お願いします

  • 行列

    (3,3)行列の問題で A=[a1 a2 a3] a1'=[1 0 0] a2'=[1 2 0] a3'=[-1 4 -2] A^7はいくつ という問題があります。 単純に計算すると時間はかかるけど答えは出ますが それでは効率がよくないと思います。 (2,2)行列みたいに簡単に計算できる方法はないのでしょうか? 教えてください。

  • 行列

    次の問題がわかりません PとQを共に任意のm次正方行列とするとき、PQとQPの固有多項式が一致することを証明せよという問題がわからず演習書の解説をみたのですが 最初にm次の正則行列UVが存在して UPV=[Er 0] (ただしErjはr次の単位行列、Oは零行列 [0 0] とかいてあるのですがこのUVの正体はなんですか? 行列の対角化とはまた違うようですし・・・ どなたかおねがいします

  • 逆ラプラス変換の求め方でアドバイス下さい(簡易説明法)

    逆ラプラス変換の求め方ですが、正式にはフーリエ変換で求めるようですが、しかし私にはかなりレベルが高くピンときません。そこで、簡便法ですが下記でも求められそうです。(一つの考え方というレベルでのことですが) しかし、6)の「式としては lim[x -> 0] は lim[x -> t] (t は >=0 の任意の値) としても成り立つ・・・」というところですがラプラス変換は ∫[0~∞] の定積分ということとマッチしてないような気がします。 たぶんこの求め方自体が邪道(数学的にはかなりいいかげんな気がしてます、また本当に正しいかどうかさえ私のレベルではわかりません)の類のような気がしてますが、簡易説明法の類としてもう少しましな物にならないかな・・・ということで詳しい方にお尋ねします。 ------------------------------ L;ラプラス変換 e^(st);e f(t);f IL;逆ラプラス変換 'n ; n回微分 と省略します。 1) ラプラス変換は、 L = ∫[0~∞] f/e dt の定積分ですが とりあえず f の式形を残したいので不定積分します。(以下 dt は省略) 2) これを部分積分しますと、L = ∫f/e = -f/es + ∫f '/es = -f/es + L'/s となります。 L'を順次展開して L = -Σ[n = 0~∞] f 'n / es^(n+1) と無限級数とすることにより L'n をとり除くことができます。 3) ここで、ラプラス変換は定積分なので、これはとりあえず積分範囲の下限 0 を可変にして x とおくと, L変換できる関数は、上限の∞では f(∞)/se^(s∞) =0 ですので L = lim[x -> 0] {+Σ[n = 0~∞] f 'n (x)/ ( e^(sx)s^(n+1) )} となります。 4) 逆変換は線積分で、 IL = (1/2πi)∫[γ- i∞ ~γ+ i∞] e^(st)L ds これは留数ですので周積分でも求めることができます、(以下ds は省略)またL中の x は可変ですので (ILでのt) = x として以下省略します。 IL = (1/2πi)∫eL = (1/2πi) lim[x -> 0] {+Σ[n = 0~∞] ∫f 'n / s^(n+1)} 5) f 'n はdsには無関係で、また留数は n = 0 以外は 0 なので. 結局 IL = (1/2πi) lim[x -> 0] f∫1/ s 、s = e^(iΘ)とすると、 ds/dΘ = is 、 IL = (1/2πi) lim[x -> 0] f∫[0,2π] is/s dΘ = lim[x -> 0]f(x) 6) 式としては lim[x -> 0] は lim[x -> t] (t は >=0 の任意の値) としても成り立つのでIL = f(t) とすることができる・・・のかな? 無理やりにでもこじつければ、t のすべての範囲で式形が同じなので・・・・とでも言えば何となくそうも思えるのですが・・・私のレベルでは頭がこんがらがってお手上げになってしまいました。

  • Z変換がわかりません

    x(n) = 1/πn*sin(πn/4) をZ変換したらどうなるのかがわかりません sin(πn/4)のZ変換ならわかるのですが、1/πnがついているので よくわからなくなってしまいました 助けてください(*_*) おねがいします

  • 対称行列の方程式について

    2次対称行列A,Bが与えられたとき X^2 + AX + B = O を満たす2次対称行列を求めよ。 という問題なのですがどのような解法で解けば いいでしょうか? ケイリー・ハミルトンの定理g(X)=Oから次数を下げて、 (A-αE)X = (βE-B) として|A-αE|の値で場合わけしようと思ったのですが 条件式が複雑すぎてうまくいきません。 どなたよろしく願いします。

  • 対称行列の方程式について

    2次対称行列A,Bが与えられたとき X^2 + AX + B = O を満たす2次対称行列を求めよ。 という問題なのですがどのような解法で解けば いいでしょうか? ケイリー・ハミルトンの定理g(X)=Oから次数を下げて、 (A-αE)X = (βE-B) として|A-αE|の値で場合わけしようと思ったのですが 条件式が複雑すぎてうまくいきません。 どなたよろしく願いします。

  • 直和の証明

    n次複素正方行列A1,・・・Arが次を満たしているとする。 (1)En=A1+...Ar (2)i=jでないならAiAj=O (3)Ai^2=Ai (i=1...r) このとき Wi={Y|あるX(XはC^nに属する)があってY=AiX} (i=1...r) とおく。 このときにC^n<W1+W2+...+Wrであることを示したいのですがわかりません。どなたかおしえてください。

  • 微分方程式

    こんにちは。 つぎの問題がわかりません。」 次の2階の線形微分方程式を係数P1(x)、P2(x)が連続であるようなxの区間Iで考える。 d^2/dx^2+p1(x)*dy/dx+p2(x)*y=0 1 これについて次の問いに答えろ ・方程式1の2つの階y1(x)y2(x)に対して、 W(x)=y1(x)dy2/dx-y2(x)dy1(x)/dx を定義する。Cをxによらない定数、x0をIのなかのある点として W(x)=Cexp[-∫(from x0 to x)p1(t)dt] となることをしめせ。 という問題で dW/dxをp1であらわし-p1Wと書けるところまでいったのですが、 dW/dx=-p1Wの方程式の答えが なんでW(x)のようになるのかがわかりません。(勉強不足・・・) 何度かチャレンジしたのですがわかりませんでした。 どなたかお願いします。