guuman の回答履歴

全719件中61~80件表示
  • 線形代数

       | a+1 8 | A =| 2 a+1 | のとき対角化可能な条件を調べたいのですが。 aのとる条件はどのような感じでしょうか。

  • 生成元の最小多項式

    情報代数学を勉強しています。次のことについて教えていただきたいです。私の書き方がわかりづらいかもしれないので、最初にその単元の教科書に載っている説明を添えておきます。 補足 K=Fqとする。K-{0}が乗法についてつくる群(K×)は位数(q-1)の巡回群である。 問1 F7×の生成元をすべて求めよ。 問2 F2^4×の生成元をすべて求め、それらのF2上の最小多項式を求めよ。 問1に関して 上の補足部分にあるとおりに考えていくと、これは位数が6の巡回群を求めることと同値。6個の元をあげると、{1,x,x^2,x^3,x^4,x^5}になり、kを自然数としてx^kを生成元とするとkは6と互いに素であればよいから求める答えは(x,x^5)となりました。 答えは出たのですが、なぜこれで生成されるのかがいまいちピンときませんし、ほんとにあっているのかどうか・・・。生成元をべき乗していったらすべての元をまかなえるっていう感じですよね? (x^5)^2=x^10=x^4 みたいに。でもこれだったら生成元はxだけでいいような気がします。きっと私がどこかで考え間違いしていると思うので、指摘してほしいです。 問2に関して 教授からのヒントで F2^4×=F2[x]/(x^4+x+1)  (F2の4次拡大)と書き換え、x^4+x+1の根をωとすると、 F2^4={a0+a1ω+a2ω^2+a3ω^3|a0,a1,a2,a2∈F2}とできる。 というのが与えられました。ここから F2^4={0,1,ω,ω+1,ω^2+ω+1,ω^3+ω^2+1,ω^3+ω+1} としたのですが、これが求める生成元になっているのでしょうか?? こちらに関してはお手上げ状態です。その生成元を求めた後の最小多項式の求め方、あとヒントにある4次拡大についてもよくわからないので教えていただきたいです。よろしくお願いいたします。

  • 生成元の最小多項式

    情報代数学を勉強しています。次のことについて教えていただきたいです。私の書き方がわかりづらいかもしれないので、最初にその単元の教科書に載っている説明を添えておきます。 補足 K=Fqとする。K-{0}が乗法についてつくる群(K×)は位数(q-1)の巡回群である。 問1 F7×の生成元をすべて求めよ。 問2 F2^4×の生成元をすべて求め、それらのF2上の最小多項式を求めよ。 問1に関して 上の補足部分にあるとおりに考えていくと、これは位数が6の巡回群を求めることと同値。6個の元をあげると、{1,x,x^2,x^3,x^4,x^5}になり、kを自然数としてx^kを生成元とするとkは6と互いに素であればよいから求める答えは(x,x^5)となりました。 答えは出たのですが、なぜこれで生成されるのかがいまいちピンときませんし、ほんとにあっているのかどうか・・・。生成元をべき乗していったらすべての元をまかなえるっていう感じですよね? (x^5)^2=x^10=x^4 みたいに。でもこれだったら生成元はxだけでいいような気がします。きっと私がどこかで考え間違いしていると思うので、指摘してほしいです。 問2に関して 教授からのヒントで F2^4×=F2[x]/(x^4+x+1)  (F2の4次拡大)と書き換え、x^4+x+1の根をωとすると、 F2^4={a0+a1ω+a2ω^2+a3ω^3|a0,a1,a2,a2∈F2}とできる。 というのが与えられました。ここから F2^4={0,1,ω,ω+1,ω^2+ω+1,ω^3+ω^2+1,ω^3+ω+1} としたのですが、これが求める生成元になっているのでしょうか?? こちらに関してはお手上げ状態です。その生成元を求めた後の最小多項式の求め方、あとヒントにある4次拡大についてもよくわからないので教えていただきたいです。よろしくお願いいたします。

  • 生成元の最小多項式

    情報代数学を勉強しています。次のことについて教えていただきたいです。私の書き方がわかりづらいかもしれないので、最初にその単元の教科書に載っている説明を添えておきます。 補足 K=Fqとする。K-{0}が乗法についてつくる群(K×)は位数(q-1)の巡回群である。 問1 F7×の生成元をすべて求めよ。 問2 F2^4×の生成元をすべて求め、それらのF2上の最小多項式を求めよ。 問1に関して 上の補足部分にあるとおりに考えていくと、これは位数が6の巡回群を求めることと同値。6個の元をあげると、{1,x,x^2,x^3,x^4,x^5}になり、kを自然数としてx^kを生成元とするとkは6と互いに素であればよいから求める答えは(x,x^5)となりました。 答えは出たのですが、なぜこれで生成されるのかがいまいちピンときませんし、ほんとにあっているのかどうか・・・。生成元をべき乗していったらすべての元をまかなえるっていう感じですよね? (x^5)^2=x^10=x^4 みたいに。でもこれだったら生成元はxだけでいいような気がします。きっと私がどこかで考え間違いしていると思うので、指摘してほしいです。 問2に関して 教授からのヒントで F2^4×=F2[x]/(x^4+x+1)  (F2の4次拡大)と書き換え、x^4+x+1の根をωとすると、 F2^4={a0+a1ω+a2ω^2+a3ω^3|a0,a1,a2,a2∈F2}とできる。 というのが与えられました。ここから F2^4={0,1,ω,ω+1,ω^2+ω+1,ω^3+ω^2+1,ω^3+ω+1} としたのですが、これが求める生成元になっているのでしょうか?? こちらに関してはお手上げ状態です。その生成元を求めた後の最小多項式の求め方、あとヒントにある4次拡大についてもよくわからないので教えていただきたいです。よろしくお願いいたします。

  • 生成元の最小多項式

    情報代数学を勉強しています。次のことについて教えていただきたいです。私の書き方がわかりづらいかもしれないので、最初にその単元の教科書に載っている説明を添えておきます。 補足 K=Fqとする。K-{0}が乗法についてつくる群(K×)は位数(q-1)の巡回群である。 問1 F7×の生成元をすべて求めよ。 問2 F2^4×の生成元をすべて求め、それらのF2上の最小多項式を求めよ。 問1に関して 上の補足部分にあるとおりに考えていくと、これは位数が6の巡回群を求めることと同値。6個の元をあげると、{1,x,x^2,x^3,x^4,x^5}になり、kを自然数としてx^kを生成元とするとkは6と互いに素であればよいから求める答えは(x,x^5)となりました。 答えは出たのですが、なぜこれで生成されるのかがいまいちピンときませんし、ほんとにあっているのかどうか・・・。生成元をべき乗していったらすべての元をまかなえるっていう感じですよね? (x^5)^2=x^10=x^4 みたいに。でもこれだったら生成元はxだけでいいような気がします。きっと私がどこかで考え間違いしていると思うので、指摘してほしいです。 問2に関して 教授からのヒントで F2^4×=F2[x]/(x^4+x+1)  (F2の4次拡大)と書き換え、x^4+x+1の根をωとすると、 F2^4={a0+a1ω+a2ω^2+a3ω^3|a0,a1,a2,a2∈F2}とできる。 というのが与えられました。ここから F2^4={0,1,ω,ω+1,ω^2+ω+1,ω^3+ω^2+1,ω^3+ω+1} としたのですが、これが求める生成元になっているのでしょうか?? こちらに関してはお手上げ状態です。その生成元を求めた後の最小多項式の求め方、あとヒントにある4次拡大についてもよくわからないので教えていただきたいです。よろしくお願いいたします。

  • 生成元の最小多項式

    情報代数学を勉強しています。次のことについて教えていただきたいです。私の書き方がわかりづらいかもしれないので、最初にその単元の教科書に載っている説明を添えておきます。 補足 K=Fqとする。K-{0}が乗法についてつくる群(K×)は位数(q-1)の巡回群である。 問1 F7×の生成元をすべて求めよ。 問2 F2^4×の生成元をすべて求め、それらのF2上の最小多項式を求めよ。 問1に関して 上の補足部分にあるとおりに考えていくと、これは位数が6の巡回群を求めることと同値。6個の元をあげると、{1,x,x^2,x^3,x^4,x^5}になり、kを自然数としてx^kを生成元とするとkは6と互いに素であればよいから求める答えは(x,x^5)となりました。 答えは出たのですが、なぜこれで生成されるのかがいまいちピンときませんし、ほんとにあっているのかどうか・・・。生成元をべき乗していったらすべての元をまかなえるっていう感じですよね? (x^5)^2=x^10=x^4 みたいに。でもこれだったら生成元はxだけでいいような気がします。きっと私がどこかで考え間違いしていると思うので、指摘してほしいです。 問2に関して 教授からのヒントで F2^4×=F2[x]/(x^4+x+1)  (F2の4次拡大)と書き換え、x^4+x+1の根をωとすると、 F2^4={a0+a1ω+a2ω^2+a3ω^3|a0,a1,a2,a2∈F2}とできる。 というのが与えられました。ここから F2^4={0,1,ω,ω+1,ω^2+ω+1,ω^3+ω^2+1,ω^3+ω+1} としたのですが、これが求める生成元になっているのでしょうか?? こちらに関してはお手上げ状態です。その生成元を求めた後の最小多項式の求め方、あとヒントにある4次拡大についてもよくわからないので教えていただきたいです。よろしくお願いいたします。

  • 代数の体について

    次のQ上の多項式の解を求めよ。 また、最小分解体Kの拡大次数[K:Q]を求めよ。 但しQは有理数全体の集合を表す。 (1) x^3 + 3x + 1 (2) x^3 - 3x + 1 (3) x^3 + x^2 - 2x - 1 以上です。 解を求めることはできるのですが、最小分解体の求め方がよくわからないのです。 どなたかわかる方、ご教示下さい。宜しくお願いします。

  • 代数の体について

    次のQ上の多項式の解を求めよ。 また、最小分解体Kの拡大次数[K:Q]を求めよ。 但しQは有理数全体の集合を表す。 (1) x^3 + 3x + 1 (2) x^3 - 3x + 1 (3) x^3 + x^2 - 2x - 1 以上です。 解を求めることはできるのですが、最小分解体の求め方がよくわからないのです。 どなたかわかる方、ご教示下さい。宜しくお願いします。

  • 代数の体について

    次のQ上の多項式の解を求めよ。 また、最小分解体Kの拡大次数[K:Q]を求めよ。 但しQは有理数全体の集合を表す。 (1) x^3 + 3x + 1 (2) x^3 - 3x + 1 (3) x^3 + x^2 - 2x - 1 以上です。 解を求めることはできるのですが、最小分解体の求め方がよくわからないのです。 どなたかわかる方、ご教示下さい。宜しくお願いします。

  • 代数の体について

    次のQ上の多項式の解を求めよ。 また、最小分解体Kの拡大次数[K:Q]を求めよ。 但しQは有理数全体の集合を表す。 (1) x^3 + 3x + 1 (2) x^3 - 3x + 1 (3) x^3 + x^2 - 2x - 1 以上です。 解を求めることはできるのですが、最小分解体の求め方がよくわからないのです。 どなたかわかる方、ご教示下さい。宜しくお願いします。

  • 代数の体について

    次のQ上の多項式の解を求めよ。 また、最小分解体Kの拡大次数[K:Q]を求めよ。 但しQは有理数全体の集合を表す。 (1) x^3 + 3x + 1 (2) x^3 - 3x + 1 (3) x^3 + x^2 - 2x - 1 以上です。 解を求めることはできるのですが、最小分解体の求め方がよくわからないのです。 どなたかわかる方、ご教示下さい。宜しくお願いします。

  • 代数の体について

    次のQ上の多項式の解を求めよ。 また、最小分解体Kの拡大次数[K:Q]を求めよ。 但しQは有理数全体の集合を表す。 (1) x^3 + 3x + 1 (2) x^3 - 3x + 1 (3) x^3 + x^2 - 2x - 1 以上です。 解を求めることはできるのですが、最小分解体の求め方がよくわからないのです。 どなたかわかる方、ご教示下さい。宜しくお願いします。

  • 代数の体について

    次のQ上の多項式の解を求めよ。 また、最小分解体Kの拡大次数[K:Q]を求めよ。 但しQは有理数全体の集合を表す。 (1) x^3 + 3x + 1 (2) x^3 - 3x + 1 (3) x^3 + x^2 - 2x - 1 以上です。 解を求めることはできるのですが、最小分解体の求め方がよくわからないのです。 どなたかわかる方、ご教示下さい。宜しくお願いします。

  • 逆ラプラス変換の求め方でアドバイス下さい(簡易説明法)

    逆ラプラス変換の求め方ですが、正式にはフーリエ変換で求めるようですが、しかし私にはかなりレベルが高くピンときません。そこで、簡便法ですが下記でも求められそうです。(一つの考え方というレベルでのことですが) しかし、6)の「式としては lim[x -> 0] は lim[x -> t] (t は >=0 の任意の値) としても成り立つ・・・」というところですがラプラス変換は ∫[0~∞] の定積分ということとマッチしてないような気がします。 たぶんこの求め方自体が邪道(数学的にはかなりいいかげんな気がしてます、また本当に正しいかどうかさえ私のレベルではわかりません)の類のような気がしてますが、簡易説明法の類としてもう少しましな物にならないかな・・・ということで詳しい方にお尋ねします。 ------------------------------ L;ラプラス変換 e^(st);e f(t);f IL;逆ラプラス変換 'n ; n回微分 と省略します。 1) ラプラス変換は、 L = ∫[0~∞] f/e dt の定積分ですが とりあえず f の式形を残したいので不定積分します。(以下 dt は省略) 2) これを部分積分しますと、L = ∫f/e = -f/es + ∫f '/es = -f/es + L'/s となります。 L'を順次展開して L = -Σ[n = 0~∞] f 'n / es^(n+1) と無限級数とすることにより L'n をとり除くことができます。 3) ここで、ラプラス変換は定積分なので、これはとりあえず積分範囲の下限 0 を可変にして x とおくと, L変換できる関数は、上限の∞では f(∞)/se^(s∞) =0 ですので L = lim[x -> 0] {+Σ[n = 0~∞] f 'n (x)/ ( e^(sx)s^(n+1) )} となります。 4) 逆変換は線積分で、 IL = (1/2πi)∫[γ- i∞ ~γ+ i∞] e^(st)L ds これは留数ですので周積分でも求めることができます、(以下ds は省略)またL中の x は可変ですので (ILでのt) = x として以下省略します。 IL = (1/2πi)∫eL = (1/2πi) lim[x -> 0] {+Σ[n = 0~∞] ∫f 'n / s^(n+1)} 5) f 'n はdsには無関係で、また留数は n = 0 以外は 0 なので. 結局 IL = (1/2πi) lim[x -> 0] f∫1/ s 、s = e^(iΘ)とすると、 ds/dΘ = is 、 IL = (1/2πi) lim[x -> 0] f∫[0,2π] is/s dΘ = lim[x -> 0]f(x) 6) 式としては lim[x -> 0] は lim[x -> t] (t は >=0 の任意の値) としても成り立つのでIL = f(t) とすることができる・・・のかな? 無理やりにでもこじつければ、t のすべての範囲で式形が同じなので・・・・とでも言えば何となくそうも思えるのですが・・・私のレベルでは頭がこんがらがってお手上げになってしまいました。

  • 逆ラプラス変換の求め方でアドバイス下さい(簡易説明法)

    逆ラプラス変換の求め方ですが、正式にはフーリエ変換で求めるようですが、しかし私にはかなりレベルが高くピンときません。そこで、簡便法ですが下記でも求められそうです。(一つの考え方というレベルでのことですが) しかし、6)の「式としては lim[x -> 0] は lim[x -> t] (t は >=0 の任意の値) としても成り立つ・・・」というところですがラプラス変換は ∫[0~∞] の定積分ということとマッチしてないような気がします。 たぶんこの求め方自体が邪道(数学的にはかなりいいかげんな気がしてます、また本当に正しいかどうかさえ私のレベルではわかりません)の類のような気がしてますが、簡易説明法の類としてもう少しましな物にならないかな・・・ということで詳しい方にお尋ねします。 ------------------------------ L;ラプラス変換 e^(st);e f(t);f IL;逆ラプラス変換 'n ; n回微分 と省略します。 1) ラプラス変換は、 L = ∫[0~∞] f/e dt の定積分ですが とりあえず f の式形を残したいので不定積分します。(以下 dt は省略) 2) これを部分積分しますと、L = ∫f/e = -f/es + ∫f '/es = -f/es + L'/s となります。 L'を順次展開して L = -Σ[n = 0~∞] f 'n / es^(n+1) と無限級数とすることにより L'n をとり除くことができます。 3) ここで、ラプラス変換は定積分なので、これはとりあえず積分範囲の下限 0 を可変にして x とおくと, L変換できる関数は、上限の∞では f(∞)/se^(s∞) =0 ですので L = lim[x -> 0] {+Σ[n = 0~∞] f 'n (x)/ ( e^(sx)s^(n+1) )} となります。 4) 逆変換は線積分で、 IL = (1/2πi)∫[γ- i∞ ~γ+ i∞] e^(st)L ds これは留数ですので周積分でも求めることができます、(以下ds は省略)またL中の x は可変ですので (ILでのt) = x として以下省略します。 IL = (1/2πi)∫eL = (1/2πi) lim[x -> 0] {+Σ[n = 0~∞] ∫f 'n / s^(n+1)} 5) f 'n はdsには無関係で、また留数は n = 0 以外は 0 なので. 結局 IL = (1/2πi) lim[x -> 0] f∫1/ s 、s = e^(iΘ)とすると、 ds/dΘ = is 、 IL = (1/2πi) lim[x -> 0] f∫[0,2π] is/s dΘ = lim[x -> 0]f(x) 6) 式としては lim[x -> 0] は lim[x -> t] (t は >=0 の任意の値) としても成り立つのでIL = f(t) とすることができる・・・のかな? 無理やりにでもこじつければ、t のすべての範囲で式形が同じなので・・・・とでも言えば何となくそうも思えるのですが・・・私のレベルでは頭がこんがらがってお手上げになってしまいました。

  • 代数の体について

    次のQ上の多項式の解を求めよ。 また、最小分解体Kの拡大次数[K:Q]を求めよ。 但しQは有理数全体の集合を表す。 (1) x^3 + 3x + 1 (2) x^3 - 3x + 1 (3) x^3 + x^2 - 2x - 1 以上です。 解を求めることはできるのですが、最小分解体の求め方がよくわからないのです。 どなたかわかる方、ご教示下さい。宜しくお願いします。

  • 代数の体について

    次のQ上の多項式の解を求めよ。 また、最小分解体Kの拡大次数[K:Q]を求めよ。 但しQは有理数全体の集合を表す。 (1) x^3 + 3x + 1 (2) x^3 - 3x + 1 (3) x^3 + x^2 - 2x - 1 以上です。 解を求めることはできるのですが、最小分解体の求め方がよくわからないのです。 どなたかわかる方、ご教示下さい。宜しくお願いします。

  • 多項式の既約性

    次の多項式がQ上既約であることを示せ。 (1) x^5 + 5x^3 + 10 (2) x^(p-1) + x^(p-2) + … x + 1  ( p は素数) (3) x^4 + 1 (4) x^6 + x^3 + 1 以上です。 (1)はアイゼンシュタインの定理を用いれば示せたのですが、 (2)以降に苦しんでいます。 (2)に関しては、x±1で割り切れないことを言えればいいのかな、 と考えたりもしたのですが、いまいち納得できません。 どなたかわかる方、よろしくお願いします。

  • 多項式の既約性

    次の多項式がQ上既約であることを示せ。 (1) x^5 + 5x^3 + 10 (2) x^(p-1) + x^(p-2) + … x + 1  ( p は素数) (3) x^4 + 1 (4) x^6 + x^3 + 1 以上です。 (1)はアイゼンシュタインの定理を用いれば示せたのですが、 (2)以降に苦しんでいます。 (2)に関しては、x±1で割り切れないことを言えればいいのかな、 と考えたりもしたのですが、いまいち納得できません。 どなたかわかる方、よろしくお願いします。

  • 多項式の既約性

    次の多項式がQ上既約であることを示せ。 (1) x^5 + 5x^3 + 10 (2) x^(p-1) + x^(p-2) + … x + 1  ( p は素数) (3) x^4 + 1 (4) x^6 + x^3 + 1 以上です。 (1)はアイゼンシュタインの定理を用いれば示せたのですが、 (2)以降に苦しんでいます。 (2)に関しては、x±1で割り切れないことを言えればいいのかな、 と考えたりもしたのですが、いまいち納得できません。 どなたかわかる方、よろしくお願いします。