• 締切済み

多項式の積が同次にならない

178-tallの回答

  • 178-tall
  • ベストアンサー率43% (762/1732)
回答No.3

引用の「証明」は小面倒で、わかり難い。 2つの多項式 f, g は変数の積の一次結合で与えられているのだろうから、単純に「分配律」を使い f, g の積を展開してみれば、「2つの多項式のうち、少なくとも1つが同次でないとき、その積が同次でない」ことぐらい、すぐに判りそう …。   

situmonn9876
質問者

お礼

実際の計算をするのも大切ですね、お返事ありがとうございます。

関連するQ&A

  • 同次多項式について

    同次多項式における定理、   同次多項式f(x,y,z)の因子は、また同次多項式である の証明をわかりやすくおしえてもらいたいのですが・・・   よろしくお願いします。

  • 同次式の因数分解

    多項式f(x,y,z)が同次式でf(x,y,z)=g(x,y,z)h(x,y,z)というふうに多項式の積に分解できたらgもhも明らかに同次式になるとあったのでその証明を考えています。 fがn次式のときはn=l+m(l、mは非負整数)としてgをl次式、hをm次式とします。gの最小次数の項がj次、hの最小次数の項がk次とすると、g=j次の項+(j+1)次以上の次数の項、h=k次の項+(k+1)次以上の次数の項となって、ghを展開すると最小次数はj+k次で、gのj次の項とhのk次の項の積以外にないのでgのj次の項=0、hのk次の項=0です。以下同じ手順をくりかえしていくとgとhの最小次数の項がそれぞれ次々に0になっていってgにはl次の項だけ、hにはm次の項だけしか残りません。 これで証明できてると思うんですが、何となくダサいのでもっとすっきりした方法があれば教えてください。 ちなみにfがn次の同次式というのはfが複素係数の3変数の多項式でf(λx,λy,λz)=(λのn乗)f(x,y,z)が任意の複素数λについていえていることとします。

  • ax²+bxy+cy²,(abc≠0)この多項式は

    ax²+bxy+cy²,(abc≠0)この多項式は次数2の斉次式だそうですが、どのようにして第2項bxyの次数が2であると見なすのでしょうか?

  • 同類項と多項式の次数について

    x^3-2ax^2y+4xy-3by+y^2+2xy-2by+4a という多項式の同類項をまとめて整理せよ。 同類項をまとめて整理すると x^3-2ax^2y+6xy+y^2-5by+4a となるそうですが、なぜ次数が最も高い-2ax^2yが一番前に来ないのでしょうか? 次に、この多項式をxとyに着目すると3次式になると思うのですが、 x^3はxが3回掛けられているので次数は3 -2ax^2yはxが2回、yが1回掛けられていて、指数の和が3なので次数は3 という考えでいいのでしょうか? また、例えばx^5+x^3y^3という多項式なら、x^3y^3の指数の和から次数は6になると思うのですが、x^5+x^2y^2という多項式の場合、xの次数が5なので多項式の次数も5ということでいいのでしょうか? それともxとyが両方含まれている項から多項式の次数を導かなければならないのでしょうか… 初歩的な問題だとは思いますが回答をお願いします <(_ _)>

  • 多項式について

    高校生のものです。 問題を解いていて「f(x)は多項式である。」という条件がありました。 もともとの知識では変数がxだけで三角関数などが含まれないで、f(x)=ax^n+bx^n-1+・・・・というのは知っています。 そこで質問なのですが、多項式とはxの次数が負のものも多項式というのでしょうか? 僕は負も多項式と考えていたのですが、解説には定数項までしかおいてなく、分母にxがあるものを考えてありませんでした。

  • 多項式を誤解している?

    多項式f(x)を求める問題で 条件の一つに x^4f(1/x)=f(x) をf(x)は満たすという条件がありました n>4の範囲では右辺が多項式であるのに、左辺は多項式とならないから、矛盾する よってf(x)の次数は4以下となる(背理法による証明) …と模範回答にあるのですが 多項式って 例えば f(x)=ax^4+b^3+c^2+dx+e みたいなやつですよね? f(x)=a/x+b+cx+dx^2+ex^3 みたいな分数型が入った式は多項式じゃないんですか? 多項式って中学生で習うのに、全然理解できてない自分にショックを受けてます。

  • 多項式の次数と定数項

    数学の教科書に次の多項式において次の文字に着目した時の次数と定数項を答えよという問題があるのですが、詳しい解説が教科書にほとんどなく、定数項の求め方はわかるのですが、この場合の次数の求め方がわかりません。 たとえば教科書に 多項式x2条y+3ax+bの次数と定数項を求める。 1 xに着目すると,次数は2,定数項はb 2 yに着目すると,次数は1,定数項は3ax+b 3 xとyに着目すると,次数は3,定数項はb という例題が載っているのですが、それぞれ定数項は求められるのですが、次数の求め方がわかりません。 どなたかお分かる方いらしゃいましたら、おしえていただけないでしょうか。 ※記号でx二条と書きたかったのですが、エラーになるので漢字で書きました。

  • 多項式の問題です。

    多項式の問題です。 xの多項式4x^3-2x^2-9x+7をxの多項式Aで割ると、その商がBで余りがx+1となる。また、AとBの和は2x^2+4x-5である。このとき、AとBを求めよ。 という問題なのですが、解答には、 A=2x^2+2x-2 B=2x-3 [題意から、Aは2次式、Bは1次式である。 AB=2(2x+3)(x^2+x-1), A+B=2x^2+4x-5] と書いてありました。 どうしてAが2次式で、Bが1次式と言えるのですか?逆ではいけないのですか? 申し訳ありませんが回答よろしくお願いします。

  • 同次交代式、反対称?

    http://www.okweb.ne.jp/kotaeru.php3?q=596464 #3の回答者の解説で、わからないところがありました。 >a、b、cを3辺の長さとする三角形がある。 >a^3(b-c)+b^3(c-a)+c^3(a-b)=0 >が成り立つとき、この三角形はどんな三角形か。 ----------------------------------------------------------------------- >左辺を f(a,b,c)とおくと, >f(a,b,c)は任意の2文字の交換に対して反対称で, >[∵f(b,a,c)=-f(a,b,c)など] >a,b,cの3文字に関する4次の同次交代式です. >するとf(a,b,c)は差積(a-b)(b-c)(c-a)で割り切れて,これは3次なので,あと1次の >a,b,cの対称式との積になるので,それは k(a+b+c) (kは0でない定数) >f(a,b,c)=k(a-b)(b-c)(c-a)(a+b+c) (kは0でない定数) >と書けます.これを与式と係数比較して,例えばaについてa^3の項の係数を見れば >k=-1と決まり,結局 >f(a,b,c)=-(a-b)(b-c)(c-a)(a+b+c) >(要するに因数分解すれば,途中は不要.)      ・      ・ ----------------------------------------------------------------- (a-b)、(b-c)、(c-a)を因数に持つことはわかります。 >1次のa,b,cの対称式との積になるので,それは k(a+b+c) (kは0でない定数) 「1次のa,b,cの対称式との積」となるのはどうしてでしょうか? 「k(a+b+c) (kは0でない定数)」とどうしてこのようにおけるのでしょうか? 同次交代式、反対称とはどういうものをいうのでしょうか。(検索してもわからず) 大学受験レベルまででお願いします

  • 調和多項式に関する補題

    調和多項式に関する次のような補題を考えています。 ________________________ H:調和多項式の全体 Hk:Hのk次斉次式全体 としたとき、HはHkの和としてただ一通りに 表される(直和) つまり、 H=ΣHk(Σはk=0から∞までの和) ________________________ 【質問1】 ただ一通りの和として書けることを示すためには、 f(x)∈Hをとり、 f(x)=Σhk(x)=Σh'k(x) …(1) (※Σはk=0から∞までの和、hk(x),h'k(x)∈Hk) としたとき、hk(x)=h'k(x)を示せばいいと考えたのですが、これはほぼ明らかとのこと。なぜ明らかなのでしょうか? 【質問2】 また(1)に関して、この和はk=0から∞までの和なので 無限和のように思えますが、実際はf(x)が多項式のため、ゼロでないhk(x)は有限個らしいのですが、これはどうしてでしょう? (ゼロでないhk(x)は有限個なので、ほとんどのhk(x)がゼロであり、このhk(x)をf(x)∈Hのk次斉次成分と呼ぶらしいのですが、こう呼ぶ理由も知りたいです。) 【質問3】 質問1の部分が分かれば、この補題の証明は終わりだと思ったのですが、それでは不完全で、この補題の証明はf(x)∈Hに対して f(x)=Σhk(x)     (※deghk(x)=k) と一通りに書いたときに、hk(x)∈Hであることを調べ なければならないようです。 hk(x)∈Hkであり、HkはHのk次斉次式全体なので hk(x)∈Hは明らかなのではないかと思ったのですが、 そう簡単にはいえないのでしょうか。 また、この補題の証明で、なぜhk(x)∈Hであることを調べなければならないのでしょうか。 以上3つが質問です。長くなってしまいましたが、回答よろしくお願い致します。