• 締切済み

重積分の解答

∬_A〖xy^2 〗 dxdyを求めよ。ただし、A:2≤y-x,x^2+y^2≪4 これを解いて、-48/5が出ました。 これであっているでしょうか? (一応、計算せずに「合ってます」という答えを書く方がいると困るので、最後、y=2とy=0を積分で代入するあたりからの計算も書いてください。全文あれば、もちろんそちらの方をベストアンサーにします)

みんなの回答

noname#232123
noname#232123
回答No.2

I=∫[-2 to 0]{∫[(x+2) to √(4 - x^2)] x*y^2dy}dx =∫[-2 to 0] (x/3){(4 - x^2)^(3/2) - (x+2)^3}dx =(1/3)[(-1/5)*(4 - x^2)^(5/2) - (1/5)x^5 - (3/2)x^4 - 4x^3 - 4x^2] =-8/5. となりました。

  • info222_
  • ベストアンサー率61% (1053/1707)
回答No.1

>これを解いて、-48/5が出ました。 >これであっているでしょうか? 間違ってる。正解は「-8/5」 計算 I=∫[0,2] (y^2)dy ∫[√(4-y^2),y-2] xdx =∫[0,2] (y^2)dy {[x^2/2] [√(4-y^2),y-2]} =(1/2)∫[0,2] (y^2) {(y-2)^2-(4-y^2)}dy =(1/2)∫[0,2] (y^2) (2y^2-4y)}dy =∫[0,2] (y^4-2y^3)dy =[y^5/5-y^4/2][0,2] =(32/5)-8 =-8/5 ...(答)

関連するQ&A

  • 重積分について。

    重積分 解答を教えて下さい。 答えが無いので自分の回答が 正解かわかりません。どなたか回答お願いします。 1 ∬D xy dxdy (D={(x,y)∈R^2|0≦x≦1,0≦y≦1}) 2 ∬D (|x|+|y|)dydx (D={(x,y)∈R^2 |x|+|y|≦1}) 3 ∬D (x^2+y^2)e^(x^2+y^2)^2 dydx (D={(x,y)∈R^2|x^2+y^2≦1}) 4 ∬D xy/x^2+y^2 dydx (D={(x,y)∈R^2|y≧x,1≦x^2+y^2≦2}) 1 普通に計算して1/4 2 4通りの場合分けをする→原点に対称なひし形ができる。 絶対値の場合分けがよくわからなかったのですが単純に4倍して答えは4 3 極座標変換して ヤコビアンr DはE; 0≦r≦1 , 0≦θ≦2πにうつる θから積分して計算すると 2π*1/4(e^4-1) となり 答えは π/2*(e^4-1) 4 極座標変換して ヤコビアンr DはE; 1≦r≦√2, π/4≦θ≦5/4πにうつる 代入してrから積分して・・・とすると積分が0になってしまいました。 積分の範囲が間違えたのかな?と思いましたができませんでした。 文章ぐちゃぐちゃで読みにくいですが回答お願いします

  • 重積分(物理)

    xy平面に置いた薄い板の慣性モーメントの計算で、 I_z =∬dxdy ρ(x^2 +y^2) =∫ρx^2 dxdy +∫ρy^2 dxdy という変形はしてよいのでしょうか? z軸方向に伸びる円柱の慣性モーメントの計算で、 I_z =∬∫dxdydz ρ(x^2 +y^2) = ∬∫ρx^2 dxdydz + ∬∫ρy^2 dxdydz と同様に分離して計算してみると、 x^2 +y^2=r^2,dxdy=2πrdrとして計算する解法と答えが一致しません。 やはり薄い板の慣性モーメントも円柱のように極座標で置くのでしょうか?板が長方形だとそのようには置けない気がするのですが? 重積分についてあまりわかっていないので、その辺りを回答してくださるとありがたいです。わかる方、回答をお願いします。

  • 重積分の問題

    よろしくお願いします。 ∬_A〖xy^2 〗 dxdyを求めよ。ただし、A:2≤y-x,x^2+y^2≪4 2≤y-xより、x+2≤y……(1) x^2+y^2≪4より、-√(4-x^2 )≤y≤√(4-x^2 )……(2) とるべきxの値は、図で示すと明らかなように-2≤x≤0……(3) よって、求めるべき重積分は、 ∫_(x+2)^(√(4-x^2 ))∫_(-2)^0〖xy^2 dxdy〗 である。 という、式の組み立てをしましたが、これであってるでしょうか。 なお、∫_(下のほう)^(上のほう)で書きました。 また、この組み立てであっているのならば、そのときはどう式を展開するのでしょうか。 積分なのに、負の数が出てくることはありえない(自分は見たことがありません)ように思える一方で、 図で示すと、明らかにxは負の値をとっていますので、そうなることもあるのかなとも思います。 どうか、ご回答いただけますよう、よろしくお願いします。

  • 重積分の問題

    xy平面上の半径1の円とf(x,y)=1で囲まれた部分の体積、つまり、(底面積:π、高さ:1の円柱の体積) ∫{1~-1}∫{√(1-y^2)~-√(1-y^2)} 1 dxdy 答え:π を解きたいのですが、上手く解けません。まず、xで積分して、 2∫{1~-1} √(1-y^2)dy  まではだせたのですが、その後の解き方が分かりません。 1-y^2をtと置いて、置換積分で出来るかと思ったのですが、上手くいきませんでした。分かりましたら解き方を教えてください。ちなみに、極座標変換はしないでこの形のまま解きたいです。

  • 重積分について。

    自分で解いてみたのですが 正解してる自信がありません。 よろしければ回答お願いできないでしょうか。 1 ∬D x/x^2+y^2 dxdy D={(x,y)∈R^2| 0≦y≦x≦1} 2 ∬D |x|dxdy D={(x,y)∈R^2|x^2+y^2≦1} 3 ∬D |x+y|dxdy D={(x,y)∈R^2|x^2+y^2≦1} 1 ∫[0,1]dy*[1/2log(x^2+y^2)][y,1] =(1/2)∫[0,1]log(1+y^2/2y^2)dy 部分積分をして 答えはπ/4 2 極座標変換をする。 0≦θ≦2π 0≦r≦1にうつる ヤコビアンr 0≦r≦1より、 ∫[0,1]r^2dr*∫[0,2π]|cosθ|dθ ここでcosθの場合分け。 僕は{[0,π/2]+[3/2π,2π]}*2で求めました。 答えは4/3 3 同じく極座標変換して,rを外に出す √2sin(θ+π/4)に書き換えて0から2πのグラフを書く。 場合分けは 0≦θ≦3/4π 3/4π≦θ≦7/4π 7/4π≦θ≦2π に分けて計算する 答えは4/3√2 でしょうか。 何か間違い等ございましたらご指摘お願いします

  • 重積分の問題が解けません

    (1)∬(x+y^2)^(-2)dxdy D:1≦x≦3、0≦y≦1 (2)∬(1-|x|-|y|)dxdy D:|x|+|y|≦1 (3)∬√(y^2-x^2)dxdy D:|x|≦y≦1 の問題がわかりません。 (1)はxについて積分して  ∫(1/(3+y^2)-1/(1+y^2))dy となりこのあとが計算できません。 (2)(3)は絶対値が入って解き方がさっぱりもわかりません。  これらについて解法を教えてください。

  • 重積分に関する問題です。

    D = {(x,y):1<= x^2+y^2 <=4}とする。 このとき ∫∫[D] 1/x^2+y^2 dxdy の値を求めよ。 ************************************************ 積分範囲を図で表すとドーナツみたいな形になっていると思うのですが、積分計算でつまってしまいました。 どのように計算していけばよいのでしょうか?

  • 重積分について教えてください。

    微分積分の回答をお願いいたします。;重積分について 次の重積分を累次積分にて計算せよ、(また、積分の領域も図示せよ) (1)∬D(x+y)dxdy,Dはy軸、y=x、y=1で囲まれた部分。 (2)∬Dxydxdy,Dはx軸、y=√x、x=1で囲まれた部分。 回答と積分の領域の図をお願いいたします。

  • 円形範囲の重積分について

    ∬xy^2/(a^2-x^2)^(1/2)dxdy 範囲 x≧0, x^2+y^2=a^2 で∬f(x,y)dydxと∬f(x,y)dydxが違う値になってしまうんですが、なぜ違うのかと計算過程を指摘してもらえるとありがたいです。

  • 重積分について

    先日行われたテストの自己採点をしたいのですが、解答をお願いいたします。 次の重積分を累次積分にて計算せよ (1)∬D(2x+y)dxdy,Dはy軸、y=x、y=1で囲まれた部分。 (2)∬D(x^(2)y)dxdy,Dはx軸、y=√x、x=1で囲まれた部分。 解答は(1)が2/3 (2)が1/8で正解でしょうか。 間違えてましたら、解答をお願いいたします。