• ベストアンサー

五の二 高校数学の場合の数

1,2,3....nの順列a[1],a[2],...a[n]とあったらa[1],a[2],...a[n]は全部違う値なのですか?

質問者が選んだベストアンサー

  • ベストアンサー
  • ONEONE
  • ベストアンサー率48% (279/575)
回答No.2

「1,2,3....nの順列a[1],a[2],...a[n]」って具体的に何が入るんですかね?

arutemawepon
質問者

お礼

御返答有難うございます、この問題は既に解決しましたので、貴方にベストアンサーを差し上げますので、他にも質問している問題がありますので、宜しければお願いします

arutemawepon
質問者

補足

a[1],a[2],...a[n]が1からnのどれかということみたいです

全文を見る
すると、全ての回答が全文表示されます。

その他の回答 (1)

  • Tacosan
  • ベストアンサー率23% (3656/15482)
回答No.1

「順列」という言葉の意味すら分からんのか....

arutemawepon
質問者

お礼

御返答有難うございます

全文を見る
すると、全ての回答が全文表示されます。

関連するQ&A

  • 五の参 高校数学の場合の数

    n>=3とする1,2,..nのうちから重複を許して6個の数字をえらびそれらを並べた順列を考える、このような順列のうちで、どの数字もそれ以外の5つの数字のどれかに等しくなっているようなものの個数を求めよ 解説 題意の順列に数字aが現れるとするとaは2回以上現れる よってa,b,cはどの2つも異なるものとして6数の組み合わせについて (1)(a,a,a,a,a,a)(2)(a,a,a,a,b,b) (3)(a,a,a,b,b,b) (4)(a,a,b,b,c,c)の4タイプがある、まずa,bの決め方については (1)n通り (2)[n]P[2]通り (3)[n]C[2]通り (4)[n]C[3]通り (3)ではたとえばa=1,b=2とa=2,b=1を同一視した 、(4)も同様 でa,b,cを決めると6個の順列については(1)1通り (2)[6]C[2]通り (3)[6]C[3]通り (4)[6]C[2]×[4]C[2]通り 以上により求める個数はn×1+n(n-1)×15+n(n-1)/2×20+n(n-1)(n-2)/6×15.×6=n+25n(n-1)+15n(n-1)(n-2)=15n^2-20n+6n 注(3)は第一段階で[n]P[2]と数えると第二段階では[6]C[3]÷2としなければなりません((4)も同様) とあったのですが(4,4,4,4,5,5)と(5,5,5,5,4,4)は違う並びで(4,4,4,5,5,5)と(5,5,5,4,4,4)は同じ選び方と考えるのは何故ですか?どちらも回転させたら同じ並びになります

  • 五の参 高校数学の場合の数

    n>=3とする1,2,..nのうちから重複を許して6個の数字をえらびそれらを並べた順列を考える、このような順列のうちで、どの数字もそれ以外の5つの数字のどれかに等しくなっているようなものの個数を求めよ 解説 題意の順列に数字aが現れるとするとaは2回以上現れる よってa,b,cはどの2つも異なるものとして6数の組み合わせについて (1)(a,a,a,a,a,a)(2)(a,a,a,a,b,b) (3)(a,a,a,b,b,b) (4)(a,a,b,b,c,c)の4タイプがある、まずa,bの決め方については (1)n通り (2)[n]P[2]通り (3)[n]C[2]通り (4)[n]C[3]通り (3)ではたとえばa=1,b=2とa=2,b=1を同一視した 、(4)も同様 でa,b,cを決めると6個の順列については(1)1通り (2)[6]C[2]通り (3)[6]C[3]通り (4)[6]C[2]×[4]C[2]通り 以上により求める個数はn×1+n(n-1)×15+n(n-1)/2×20+n(n-1)(n-2)/6×15.×6=n+25n(n-1)+15n(n-1)(n-2)=15n^2-20n+6n 注(3)は第一段階で[n]P[2]と数えると第二段階では[6]C[3]÷2としなければなりません((4)も同様) とあったのですが、まずa,bの選び方は(1)のn通り、(2)の[n]P[2]通りは分かります、(3)と(4)は何で[n]P[2]じゃ駄目なんですか?並べ方は分かります まず

  • 五の参 高校数学の場合の数

    n>=3のとき1からnのうちから重複を許して6個の数字を選び並べた順列のうちでどの数字もそれ以外の5つの数字のどれかに等しくなる個数を求めよ 回答 順列にaが現れるとするとaは2回以上現れる、よってa,b,cはどの2つも異なるとして 6数の組み合わせは (1)(a,a,a,a,a,a)(2)(a,a,a,a,b,b) (3)(a,a,a,b,b,b) (4)(a,a,b,b,c,c) の4タイプあり、a,b,cの決め方は(1) n通り (2) nP2通り (3) nC2通り (4) nC3通り 3では例えばa=1,b=2とa=2、b=1を同一視した4も同様 a,b,cを決めると6個の順列については(1) 1通り (2) 6C2通り (3) 6C3通り (4) 6C2×4C2通り (3)は第一段階でnP2と数えると第二段階で6C3÷2としなければなりません (4)も同様 とあったのですが6数の組み合わせは (1)(a,a,a,a,a,a)(2)(a,a,a,a,b,b) (3)(a,a,a,b,b,b) (4)(a,a,b,b,c,c) の4タイプあり、a,b,cの決め方は(1) n通り (2) nP2通り (3) nC2通り (4) nC3通りの所なのですが、何故(1)~(4)までの場合がn通りやnC2通りやnP2通りやnC3通りになっているのかわかりません (3)では例えばa=1,b=2とa=2、b=1を同一視した4も同様も何の事なのかよくわかりません (3)は第一段階でnP2と数えると第二段階で6C3÷2としなければなりません (4)も同様も何のことなのか良くわかりませんPって順列ですよね

  • [数学A]場合の数

    J、A、P、A、N、E、S、Eの8個の文字全部を使ってできる順列について、異なる並べ方は何通りあるか。また、「JはPより左側にあり、かつPはNより左側にあるような並べ方」は何通りあるか。 [解答] 異なる並べ方:10080通り 「JはPより左側にあり、かつPはNより左側にあるような並べ方」:1680通り 解答は分かるのですが、計算の仕方や考え方がわかりません。 よろしくおねがいします。

  • 場合の数

    a,a,a,b,b,cの6個の文字全部を横1列に並べて順列をつくる 両端の文字が異なる順列は何通りあるか という問題がわかりません 両端にaaとbbで4!/3!×2で60-8=52通りだと思ったら44通りになるらしいです どうやったら44通りになるのでしょうか? 教えて下さい

  • 五の四 高校数学の場合の数です

    1から2nまでの2n個の整数がある 次の二つの性質(A),(B)をもつ4つの整数a,b,c,dをこの2n個の整数から選ぶ選び方は何通りあるか、ただしn>=2とする(A)1<=a<b<c<d<=2n (B)a+d=b+c 回答d-aを固定してkは自然数として(1)d-a=2k+1のときはa,dの決め方はa=1~2n-(2k+1)の2n-(2k+1)通りでb,cの決め方はk通り (2)d-a=2(k+1)のときはa,dの決め方がa=1~2n-2(k+1)の2n-2(k+1)通りでb,cの決め方はk通り したがって求める場合の数はΣ[k=1→n-1]{2n-(2k+1)}k+Σ[k=1→n-1]{2n-2(k+1)}k =Σ[k=1→n-1]{(4n-3)k-4k^2}=n(n-1)(4n-5)/6 (注)(B)は数直線上でaとdの中点とbとcの中点が同じという条件でこの中点の位置を固定するのがよく例えばn=4のとき中点が3.5と4の場合は各3C2通り、中点が5.5と5の場合も各3C2通りと考えて 4Σ[k=3→n](k-1)C2+nC2=4×nC3+nC2 となっていたのですがまず(1)と(2)でd-a=2k+1とd-a=2(k+1)の場合で分ける理由がわかりません a,dの決め方が(1)でa=1~2n-(2k+1)の2n-(2k+1)通り、(2)でa=1~2n-2(k+1)の2n-2(k+1)通りとなるのもよくわからないです (1)と(2)でb,cの決め方はk通りと同じになるのも何故なのかわかりません Σ[k=1→n-1]{2n-(2k+1)}k+Σ[k=1→n-1]{2n-2(k+1)}kとかのkがn-1までなのが何故なのかわかりません 注の所はn=4の時2n=8ですから中点って4.5じゃないんですか?何故3.5と4の場合とか5.5と5の場合とかで考えるのがわからないのと3C2というのが何で出てくるのかと最後の4Σ[k=3→n](k-1)C2+nC2=4×nC3+nC2見たいな式が何で出てくるのか、とにかくサッパリわかりません

  • 5-8 高校数学 場合の数

    nを正の整数とし、n個のボールを3つの箱に分けて入れる問題を考える ただし1個のボールも入らない箱があってもよいものとする 以下に述べる4つの場合についてそれぞれ相異なる入とれ方の総数を求めたい (1)1からnまで異なる番号の付いたn個のボールをA,B,Cと区別された3つの箱に入れる場合、その入れ方は全部で何通りあるか (2)互いに区別の付かないn個のボールをA,B,Cと区別された3つの箱に入れる場合その入れ方は全部で何通りあるか (3)1からnまで異なる番号の付いたn個のボールを区別の付かない3つの箱に入れる場合、その入れ方は全部で何通りあるか (4)nが6の倍数6mであるとき、n個の互いに区別の付かないボールを区別の付かない3つの箱に入れる場合、その入れ方は全部で何通りあるか (解説) (1)3^n (2)A,B,Cにそれぞれa,b,c個入るとしてa+b+c=n(a>=0,b>=0,c>=0)(1) をみたす整数解(a,b,c)の個数を求めればよいが、(1)は(a+1)+(b+1)+(c+1)=n+3 (a+1>=1,b+1>=1,c+1>=1) と同値であることに着目して[n+2]C[2]=(n^2+3n+2)/2通り (3)求める場合の数を次のように3分割する nことも1箱だけに入れるもの...x通り n個を2箱に分散して入れるもの...y通り n個を3箱に分散して入れるもの...z通り これらx,y,zと(1)との関係を考えると、まずx=1であり(1)ではこれを3通りと数えy通りの1つ1つを(1)では3!通りと数えz通りの1つ1つを(1)では3!通りと数えている したがってx×3+(y+z)×6=3^n(x=1) よって求める場合の数x+y+zは1+y+z=1+(3^n-1×3)/6=(3^(n-1)+1)/2通り (4)3箱のボールの個数をa,b,c(a<=b<=c)とし(3)と同様に求める場合の数を次のように3分割する a=b=cをみたすもの...p通り a=b<c or a<b=cをみたすもの...q通り a<b<cをみたすもの...r通り すると(2)の場合の数はp+3q+6r通りと数えられるから p+3q+6r=(n^2+3n+2)/2(2) ここでp=1であり、またq通りは(0,0,6m)(1,1,6m-2)....(3m,3m,0)の3m+1通りから(2m,2m,2m)の1通りを除いてq=3mである、よって(2)から r=1/6×{1/2×(36m^2+18m+2)-(1+3×3m)}=3m^2 以上により答えはp+q+r=3m^2+3m+1通り の (3)のx,y,zが(1)で1や3!通りずつという所と x×3+(y+z)×6=3^n の所が何を意味しているのか分かりません (4)の解説で(2)の場合の数がp+3q+6rの所とr=1/6{}=3m^2 以上によりp+q+r=3m^2+3m+1通りというのが何でなのか分かりません を質問したら (3) n個とも1箱だけにいれるもの・・・x通り これが(1)の数え方なら3通りあり、(3)の形では1通り n個を2箱に分散して入れるもの・・y通り n個を3箱に分散して入れるもの・・・z通り yとzの数は同じ考え方で計算できるという意味で同じです。 例(6,2,1)(6,1,2)(1,6,2)(1,2,6)(2,6,1)(2,1,6) は全て同じものとして考えられますが、同様にして (6,3,0)(6,0,3)(0,6,3)(0,3,6)(3,6,0)(3,0,6) となりこの両者は同じものです。この両者は同じですから分けて考えるのではなく、同じものとして(y+z)を求めた方が楽 xとy,zの違いは一番多く入った箱以外の二つの箱を区別するかどうかだけです。 便宜的に箱をABCと名前をつけると、(1)の結果から3^n通あり ここからどれか一つの箱にだけ入っている場合の3通りを引くと(3^n-3)になります。この箱の名前を付け替えるとすればA→3通り、B→2通り、Cは残り、と3!通りあるはずです。 したがって、x+y+z = 1 + (3^n-3)÷3! (4) まずa=b=c の時は1通りしかないのは問題ないでしょう。このとき、a=b=c=2mです。次にa=b<c or a<b=cをみたすもの・・q通り ですが、a=bのとき、a<cなのでaは0から2m-1までの2m通り、同様にb=cのときはbは2m+1から3mまでのm通りあるはずです。 a<b<cをみたすもの・・r通り a<b<cから、aは0~2m-1までの2m通りあるはずです。aとbが決まればcも決まるという関係上、aとbだけを考えればよいです ここでaが奇数のときはm通りあり a=2m-1の時、b+c=4m+1からbは2mの1通り a=2m-3の時、b+c=4m+3からbは2m-2~2m+1の4通り ・・・ a=1の時、b+c=6m-1からbは2~3m-1の(3m-2)通り よりΣ(3m-2)=3m(m+1)/2-2m通り 偶数のときも同様にm通りあり、(b=cとなるときを除外しなければならないのに注意) a=2m-2の時、b+c=4m+2からbは2m-1~2mの2通り a=2m-4の時、b+c=4m+4からbは2m-3~2m+1の5通り ・・・ a=0の時、b+c=6mからbは1~3m-1の(3m-1)通り よりΣ(3m-1)=3m(m+1)/2-m通り よって 3m(m+1)/2-2m + 3m(m+1)/2-m と回答して下さったのですが (3)でyとzが同じとあるのですが例えばn=6の時 箱が空の時(3,3,0),(3,0,3),(0,3,3)とあり箱に入る球がすべて違うとき(1,2,3)(1,3,2)(2,1,3)(2,3,1)(3,1,2)(3,2,1)となり異なるのではないですか?同じと言うのが何故同じなのか分かりません 仮に(y+z)を求めるとして、 (3^n-3)になるのも分からないです (4)は偶数と奇数で分ける所ですが偶数だとb=cの場合があるから分ける必要があるとあるのですがb=cになると何故駄目なのでしょうか?

  • 集合と場合の数

    mammalというゴの6文字を全部並べて得られる順列のうち、2つのaが隣り合わないものの総数を求めよ。   A.40 という問題があるのですが解法が導き出せません。 是非教えてください。

  • 5-8 高校数学 場合の数

    nを正の整数とし,n個のボールを3つの箱に分けて入れる問題を考える、ただし1個のボールも入らない箱があってもよいとする 以下に述べる4つの場合について、それぞれ相異なる入れ方の総数を求めたい (1)1からnまで異なる番号のついたn個のボールをA,B,Cと区別された3つの箱に入れる場合その入れ方は何通りあるか (2)互いに区別のつかないn個のボールをA,B,Cと区別された3つの箱に入れる場合その入れ方は何通りあるか (3)1からnまで異なる番号のついたn個のボールを区別のつかない3つの箱に入れる場合その入れ方は全部で何通りあるか (4)nが6の倍数6mであるときn個の互いに区別のつかないボールを区別のつかない3つの箱に入れる場合その入れ方は何通りあるか 解説(1)は3^n通り (2)は[n+2]C[2]=(n^2+3n+2)/2通り (3)求める場合の数を次のように三分割する n個とも1箱だけにいれるもの・・・x通り n個を2箱に分散して入れるもの・・y通り n個を3箱に分散して入れるもの・・・z通り これらx,y,zと(1)との関係を考えると、まずx=1であり(1)ではこれを3通りと数えy通りの1つ1つを(1)では 3!通りと数えz通りの1つ1つを(1)では3!通りと数えている したがって x×3+(y+z)×6=3^nよって求める場合の数x+y+zは1+y+z=1+(3^n-1×3)/6={3^(n-1)+1}/2通り (4)3箱のボールの個数をa,b,c(a<=b<=c)としa=b=cをみたすもの・・p通り a=b<c or a<b=cをみたすもの・・q通り a<b<cをみたすもの・・r通り すると(2)の場合の数はp+3q+6r通りと数えられるからp+3q+6r=(n^2+3n+2)/2・・・(2) ここでp=1であり、またq通りは(0,0,6m),(1,1,6m-2),・・・、(3m,3m,0)の3m+1通りから(2m,2m,2m)の1通り を除いてq=3mである  よって(2)からr=1/6×{(36m^2+18m+2)-(1+3×3m)}=3m^2 以上により答えはp+q+r=3m^2+3m+1通り とあるのですが (3)のx,y,zが(1)で1や3!通りずつという所と x×3+(y+z)×6=3^n の所が何を意味しているのか分かりません (4)の解説で(2)の場合の数がp+3q+6rの所とr=1/6{}=3m^2 以上によりp+q+r=3m^2+3m+1通りというのが何でなのか分かりません

  • 数学(高校入試レベル)について質問です。

    (1) a-3 -2a-7/5 =4 のとき、aの値を求めよ。 (2)n角形の対角線の本数は全部で 1/2n(n-3)本である。対角線が全部で65本ひける多角形は何角形かを答えよ。 (3)AをBで割ったときの余りを(A▲B)と表すことにする。 (118▲17)▲(59▲7)を計算せよ。 例(5▲3)=2 全て答えは分かるのですが 途中解説がわかりません。 数学が得意な方教えてください(*_*)

このQ&Aのポイント
  • 外国人が聞き取れない箇所や聞き間違いを教えていただけますか?
  • 以下は外国人が聞き取れなかった箇所です。
  • 質問文章の内容をまとめると、外国人が聞き取れない箇所や聞き間違いがあったことを教えてください。
回答を見る