五の参 高校数学の場合の数

このQ&Aのポイント
  • n>=3とする1,2,..nのうちから重複を許して6個の数字をえらびそれらを並べた順列を考える、このような順列のうちで、どの数字もそれ以外の5つの数字のどれかに等しくなっているようなものの個数を求めよ
  • 解説 題意の順列に数字aが現れるとするとaは2回以上現れる
  • よってa,b,cはどの2つも異なるものとして6数の組み合わせについて
回答を見る
  • ベストアンサー

五の参 高校数学の場合の数

n>=3とする1,2,..nのうちから重複を許して6個の数字をえらびそれらを並べた順列を考える、このような順列のうちで、どの数字もそれ以外の5つの数字のどれかに等しくなっているようなものの個数を求めよ 解説 題意の順列に数字aが現れるとするとaは2回以上現れる よってa,b,cはどの2つも異なるものとして6数の組み合わせについて (1)(a,a,a,a,a,a)(2)(a,a,a,a,b,b) (3)(a,a,a,b,b,b) (4)(a,a,b,b,c,c)の4タイプがある、まずa,bの決め方については (1)n通り (2)[n]P[2]通り (3)[n]C[2]通り (4)[n]C[3]通り (3)ではたとえばa=1,b=2とa=2,b=1を同一視した 、(4)も同様 でa,b,cを決めると6個の順列については(1)1通り (2)[6]C[2]通り (3)[6]C[3]通り (4)[6]C[2]×[4]C[2]通り 以上により求める個数はn×1+n(n-1)×15+n(n-1)/2×20+n(n-1)(n-2)/6×15.×6=n+25n(n-1)+15n(n-1)(n-2)=15n^2-20n+6n 注(3)は第一段階で[n]P[2]と数えると第二段階では[6]C[3]÷2としなければなりません((4)も同様) とあったのですが、まずa,bの選び方は(1)のn通り、(2)の[n]P[2]通りは分かります、(3)と(4)は何で[n]P[2]じゃ駄目なんですか?並べ方は分かります まず

質問者が選んだベストアンサー

  • ベストアンサー
  • f272
  • ベストアンサー率46% (7992/17078)
回答No.3

(3)の第1段階で例えば1と2を選んだとする。第2段階では[6]C[3]=20とおりだ。 1 1 1 2 2 2 1 1 2 1 2 2 1 1 2 2 1 2 1 1 2 2 2 1 1 2 1 1 2 2 1 2 1 2 1 2 1 2 1 2 2 1 1 2 2 1 1 2 1 2 2 1 2 1 1 2 2 2 1 1 2 2 2 1 1 1 2 2 1 2 1 1 2 2 1 1 2 1 2 2 1 1 1 2 2 1 2 2 1 1 2 1 2 1 2 1 2 1 2 1 1 2 2 1 1 2 2 1 2 1 1 2 1 2 2 1 1 1 2 2 (3)の第1段階で例えば2と1を選んだとする。第2段階では[6]C[3]=20とおりだ。 でもこれは上に書いたのと同じだよね。 手を動かして,具体的な数値で考えようよ。

arutemawepon
質問者

お礼

御返答有難うございます

arutemawepon
質問者

補足

(4)はなんで3で割るんですか?これも同じような理由ですか?1,2,3を選んだとして 112233,113322,121233,131322,123123,132132,133221,122331(i) 221133,223311,212133,232311,213213,231231,233112,211332(ii) 331122,332211,313122.323211.312313.321321,322113,311221(iii) で合計24通りで(i)(ii)(iii)が同じだから3で割って8通りですか?何か数え間違いしてそうだけど

その他の回答 (5)

  • Tacosan
  • ベストアンサー率23% (3656/15482)
回答No.6

再確認だけど, 日本の小学校を (その教育課程を理解して) 卒業していれば 「句点」 というものの存在とその使用方法は知ってるはずだよね?

arutemawepon
質問者

お礼

御返答有難うございます

arutemawepon
質問者

補足

知ってるけど、そんなのどうでもいいじゃないですか?要はこちらの質問した内容が伝わっているかどうかじゃないんですか?細かい事を言いだしたら人間なんだから間違いもありますよ

  • f272
  • ベストアンサー率46% (7992/17078)
回答No.5

#2の補足で > 並び方は(4)だと6個の置く場所に2個のaを置くのは[6]C[2]、残り4箇所に2個のbを並べるのは[4]C[2]通りa,bが決まれば自動的にcの置く場所が決まる と言ってるのに,今度は > 合計24通りで(i)(ii)(iii)が同じだから3で割って8通り ですか?結局,並べ方もわからないと言うこと?

arutemawepon
質問者

お礼

御返答有難うございます

arutemawepon
質問者

補足

(4)は自分で並べたらああなったんですが、答えと違うこと考えたら数えもれがありそうですが

  • Tacosan
  • ベストアンサー率23% (3656/15482)
回答No.4

#1 を勝手に補足する. 日本の小学校を卒業していれば (そしてそこで学んだことを理解していれば) 「句点」というものは知ってるはずだよね? そもそも「まず」で終わる日本語はそれ自体おかしいんだが.

arutemawepon
質問者

お礼

御返答有難うございます

arutemawepon
質問者

補足

それね、何か書いてたらずれてそのままになっただけですよ、改行とかしてたらたまになるとき有るじゃないですか、だから自分で意識してなったわけじゃないです、後で見たらミスしたとは思いましたよ自分でも

  • f272
  • ベストアンサー率46% (7992/17078)
回答No.2

> (3)と(4)は何で[n]P[2]じゃ駄目なんですか? 駄目とは書いてないよ。 > 注(3)は第一段階で[n]P[2]と数えると第二段階では[6]C[3]÷2としなければなりません と書いてあるよね。 > 並べ方は分かります と言うのだから,なず第二段階では[6]C[3]÷2としなければならないのかはわかるだろう。

arutemawepon
質問者

お礼

御返答有難うございます

arutemawepon
質問者

補足

>第二段階では[6]C[3]÷2としなければなりません >と書いてあるよね。 何で第二段階でそうなるんですか?最初にaを選ぶのがn通り次にbを選ぶのがn-1通りだから a,bの選び方はn(n-1)通りですね。ここから(a,a,a,b,b,b) と並べるのは6箇所の置く場所に 3つのaを並べるから[6]C[3]残りの3箇所は自動的にbになるからこれでいいのではないですか? >と言うのだから,なず第二段階では[6]C[3]÷2としなければならないのかはわかるだろ >う。 それはa,bの選び方です、並び方は(4)だと6個の置く場所に2個のaを置くのは[6]C[2]、残り4箇所に2個のbを並べるのは[4]C[2]通りa,bが決まれば自動的にcの置く場所が決まる

  • yyssaa
  • ベストアンサー率50% (747/1465)
回答No.1

n>=3とする1,2,..nのうちから・・・ってなんだかおかしいよね?

arutemawepon
質問者

お礼

御返答有難うございます

arutemawepon
質問者

補足

え、何でですか?nが3以上だから最低でも1,2,3のなかからってことじゃないんですか? 6個選ぶとき重複ありだから別に問題ないですよ

関連するQ&A

  • 五の参 高校数学の場合の数

    n>=3とする1,2,..nのうちから重複を許して6個の数字をえらびそれらを並べた順列を考える、このような順列のうちで、どの数字もそれ以外の5つの数字のどれかに等しくなっているようなものの個数を求めよ 解説 題意の順列に数字aが現れるとするとaは2回以上現れる よってa,b,cはどの2つも異なるものとして6数の組み合わせについて (1)(a,a,a,a,a,a)(2)(a,a,a,a,b,b) (3)(a,a,a,b,b,b) (4)(a,a,b,b,c,c)の4タイプがある、まずa,bの決め方については (1)n通り (2)[n]P[2]通り (3)[n]C[2]通り (4)[n]C[3]通り (3)ではたとえばa=1,b=2とa=2,b=1を同一視した 、(4)も同様 でa,b,cを決めると6個の順列については(1)1通り (2)[6]C[2]通り (3)[6]C[3]通り (4)[6]C[2]×[4]C[2]通り 以上により求める個数はn×1+n(n-1)×15+n(n-1)/2×20+n(n-1)(n-2)/6×15.×6=n+25n(n-1)+15n(n-1)(n-2)=15n^2-20n+6n 注(3)は第一段階で[n]P[2]と数えると第二段階では[6]C[3]÷2としなければなりません((4)も同様) とあったのですが(4,4,4,4,5,5)と(5,5,5,5,4,4)は違う並びで(4,4,4,5,5,5)と(5,5,5,4,4,4)は同じ選び方と考えるのは何故ですか?どちらも回転させたら同じ並びになります

  • 五の参 高校数学の場合の数

    n>=3のとき1からnのうちから重複を許して6個の数字を選び並べた順列のうちでどの数字もそれ以外の5つの数字のどれかに等しくなる個数を求めよ 回答 順列にaが現れるとするとaは2回以上現れる、よってa,b,cはどの2つも異なるとして 6数の組み合わせは (1)(a,a,a,a,a,a)(2)(a,a,a,a,b,b) (3)(a,a,a,b,b,b) (4)(a,a,b,b,c,c) の4タイプあり、a,b,cの決め方は(1) n通り (2) nP2通り (3) nC2通り (4) nC3通り 3では例えばa=1,b=2とa=2、b=1を同一視した4も同様 a,b,cを決めると6個の順列については(1) 1通り (2) 6C2通り (3) 6C3通り (4) 6C2×4C2通り (3)は第一段階でnP2と数えると第二段階で6C3÷2としなければなりません (4)も同様 とあったのですが6数の組み合わせは (1)(a,a,a,a,a,a)(2)(a,a,a,a,b,b) (3)(a,a,a,b,b,b) (4)(a,a,b,b,c,c) の4タイプあり、a,b,cの決め方は(1) n通り (2) nP2通り (3) nC2通り (4) nC3通りの所なのですが、何故(1)~(4)までの場合がn通りやnC2通りやnP2通りやnC3通りになっているのかわかりません (3)では例えばa=1,b=2とa=2、b=1を同一視した4も同様も何の事なのかよくわかりません (3)は第一段階でnP2と数えると第二段階で6C3÷2としなければなりません (4)も同様も何のことなのか良くわかりませんPって順列ですよね

  • 5-8 高校数学 場合の数

    nを正の整数とし,n個のボールを3つの箱に分けて入れる問題を考える、ただし1個のボールも入らない箱があってもよいとする 以下に述べる4つの場合について、それぞれ相異なる入れ方の総数を求めたい (1)1からnまで異なる番号のついたn個のボールをA,B,Cと区別された3つの箱に入れる場合その入れ方は何通りあるか (2)互いに区別のつかないn個のボールをA,B,Cと区別された3つの箱に入れる場合その入れ方は何通りあるか (3)1からnまで異なる番号のついたn個のボールを区別のつかない3つの箱に入れる場合その入れ方は全部で何通りあるか (4)nが6の倍数6mであるときn個の互いに区別のつかないボールを区別のつかない3つの箱に入れる場合その入れ方は何通りあるか 解説(1)は3^n通り (2)は[n+2]C[2]=(n^2+3n+2)/2通り (3)求める場合の数を次のように三分割する n個とも1箱だけにいれるもの・・・x通り n個を2箱に分散して入れるもの・・y通り n個を3箱に分散して入れるもの・・・z通り これらx,y,zと(1)との関係を考えると、まずx=1であり(1)ではこれを3通りと数えy通りの1つ1つを(1)では 3!通りと数えz通りの1つ1つを(1)では3!通りと数えている したがって x×3+(y+z)×6=3^nよって求める場合の数x+y+zは1+y+z=1+(3^n-1×3)/6={3^(n-1)+1}/2通り (4)3箱のボールの個数をa,b,c(a<=b<=c)としa=b=cをみたすもの・・p通り a=b<c or a<b=cをみたすもの・・q通り a<b<cをみたすもの・・r通り すると(2)の場合の数はp+3q+6r通りと数えられるからp+3q+6r=(n^2+3n+2)/2・・・(2) ここでp=1であり、またq通りは(0,0,6m),(1,1,6m-2),・・・、(3m,3m,0)の3m+1通りから(2m,2m,2m)の1通り を除いてq=3mである  よって(2)からr=1/6×{(36m^2+18m+2)-(1+3×3m)}=3m^2 以上により答えはp+q+r=3m^2+3m+1通り とあるのですが (3)のx,y,zが(1)で1や3!通りずつという所と x×3+(y+z)×6=3^n の所が何を意味しているのか分かりません (4)の解説で(2)の場合の数がp+3q+6rの所とr=1/6{}=3m^2 以上によりp+q+r=3m^2+3m+1通りというのが何でなのか分かりません

  • 5-8 高校数学 場合の数

    nを正の整数とし、n個のボールを3つの箱に分けて入れる問題を考える ただし1個のボールも入らない箱があってもよいものとする 以下に述べる4つの場合についてそれぞれ相異なる入とれ方の総数を求めたい (1)1からnまで異なる番号の付いたn個のボールをA,B,Cと区別された3つの箱に入れる場合、その入れ方は全部で何通りあるか (2)互いに区別の付かないn個のボールをA,B,Cと区別された3つの箱に入れる場合その入れ方は全部で何通りあるか (3)1からnまで異なる番号の付いたn個のボールを区別の付かない3つの箱に入れる場合、その入れ方は全部で何通りあるか (4)nが6の倍数6mであるとき、n個の互いに区別の付かないボールを区別の付かない3つの箱に入れる場合、その入れ方は全部で何通りあるか (解説) (1)3^n (2)A,B,Cにそれぞれa,b,c個入るとしてa+b+c=n(a>=0,b>=0,c>=0)(1) をみたす整数解(a,b,c)の個数を求めればよいが、(1)は(a+1)+(b+1)+(c+1)=n+3 (a+1>=1,b+1>=1,c+1>=1) と同値であることに着目して[n+2]C[2]=(n^2+3n+2)/2通り (3)求める場合の数を次のように3分割する nことも1箱だけに入れるもの...x通り n個を2箱に分散して入れるもの...y通り n個を3箱に分散して入れるもの...z通り これらx,y,zと(1)との関係を考えると、まずx=1であり(1)ではこれを3通りと数えy通りの1つ1つを(1)では3!通りと数えz通りの1つ1つを(1)では3!通りと数えている したがってx×3+(y+z)×6=3^n(x=1) よって求める場合の数x+y+zは1+y+z=1+(3^n-1×3)/6=(3^(n-1)+1)/2通り (4)3箱のボールの個数をa,b,c(a<=b<=c)とし(3)と同様に求める場合の数を次のように3分割する a=b=cをみたすもの...p通り a=b<c or a<b=cをみたすもの...q通り a<b<cをみたすもの...r通り すると(2)の場合の数はp+3q+6r通りと数えられるから p+3q+6r=(n^2+3n+2)/2(2) ここでp=1であり、またq通りは(0,0,6m)(1,1,6m-2)....(3m,3m,0)の3m+1通りから(2m,2m,2m)の1通りを除いてq=3mである、よって(2)から r=1/6×{1/2×(36m^2+18m+2)-(1+3×3m)}=3m^2 以上により答えはp+q+r=3m^2+3m+1通り の (3)のx,y,zが(1)で1や3!通りずつという所と x×3+(y+z)×6=3^n の所が何を意味しているのか分かりません (4)の解説で(2)の場合の数がp+3q+6rの所とr=1/6{}=3m^2 以上によりp+q+r=3m^2+3m+1通りというのが何でなのか分かりません を質問したら (3) n個とも1箱だけにいれるもの・・・x通り これが(1)の数え方なら3通りあり、(3)の形では1通り n個を2箱に分散して入れるもの・・y通り n個を3箱に分散して入れるもの・・・z通り yとzの数は同じ考え方で計算できるという意味で同じです。 例(6,2,1)(6,1,2)(1,6,2)(1,2,6)(2,6,1)(2,1,6) は全て同じものとして考えられますが、同様にして (6,3,0)(6,0,3)(0,6,3)(0,3,6)(3,6,0)(3,0,6) となりこの両者は同じものです。この両者は同じですから分けて考えるのではなく、同じものとして(y+z)を求めた方が楽 xとy,zの違いは一番多く入った箱以外の二つの箱を区別するかどうかだけです。 便宜的に箱をABCと名前をつけると、(1)の結果から3^n通あり ここからどれか一つの箱にだけ入っている場合の3通りを引くと(3^n-3)になります。この箱の名前を付け替えるとすればA→3通り、B→2通り、Cは残り、と3!通りあるはずです。 したがって、x+y+z = 1 + (3^n-3)÷3! (4) まずa=b=c の時は1通りしかないのは問題ないでしょう。このとき、a=b=c=2mです。次にa=b<c or a<b=cをみたすもの・・q通り ですが、a=bのとき、a<cなのでaは0から2m-1までの2m通り、同様にb=cのときはbは2m+1から3mまでのm通りあるはずです。 a<b<cをみたすもの・・r通り a<b<cから、aは0~2m-1までの2m通りあるはずです。aとbが決まればcも決まるという関係上、aとbだけを考えればよいです ここでaが奇数のときはm通りあり a=2m-1の時、b+c=4m+1からbは2mの1通り a=2m-3の時、b+c=4m+3からbは2m-2~2m+1の4通り ・・・ a=1の時、b+c=6m-1からbは2~3m-1の(3m-2)通り よりΣ(3m-2)=3m(m+1)/2-2m通り 偶数のときも同様にm通りあり、(b=cとなるときを除外しなければならないのに注意) a=2m-2の時、b+c=4m+2からbは2m-1~2mの2通り a=2m-4の時、b+c=4m+4からbは2m-3~2m+1の5通り ・・・ a=0の時、b+c=6mからbは1~3m-1の(3m-1)通り よりΣ(3m-1)=3m(m+1)/2-m通り よって 3m(m+1)/2-2m + 3m(m+1)/2-m と回答して下さったのですが (3)でyとzが同じとあるのですが例えばn=6の時 箱が空の時(3,3,0),(3,0,3),(0,3,3)とあり箱に入る球がすべて違うとき(1,2,3)(1,3,2)(2,1,3)(2,3,1)(3,1,2)(3,2,1)となり異なるのではないですか?同じと言うのが何故同じなのか分かりません 仮に(y+z)を求めるとして、 (3^n-3)になるのも分からないです (4)は偶数と奇数で分ける所ですが偶数だとb=cの場合があるから分ける必要があるとあるのですがb=cになると何故駄目なのでしょうか?

  • 五の四 高校数学の場合の数です

    1から2nまでの2n個の整数がある 次の二つの性質(A),(B)をもつ4つの整数a,b,c,dをこの2n個の整数から選ぶ選び方は何通りあるか、ただしn>=2とする(A)1<=a<b<c<d<=2n (B)a+d=b+c 回答d-aを固定してkは自然数として(1)d-a=2k+1のときはa,dの決め方はa=1~2n-(2k+1)の2n-(2k+1)通りでb,cの決め方はk通り (2)d-a=2(k+1)のときはa,dの決め方がa=1~2n-2(k+1)の2n-2(k+1)通りでb,cの決め方はk通り したがって求める場合の数はΣ[k=1→n-1]{2n-(2k+1)}k+Σ[k=1→n-1]{2n-2(k+1)}k =Σ[k=1→n-1]{(4n-3)k-4k^2}=n(n-1)(4n-5)/6 (注)(B)は数直線上でaとdの中点とbとcの中点が同じという条件でこの中点の位置を固定するのがよく例えばn=4のとき中点が3.5と4の場合は各3C2通り、中点が5.5と5の場合も各3C2通りと考えて 4Σ[k=3→n](k-1)C2+nC2=4×nC3+nC2 となっていたのですがまず(1)と(2)でd-a=2k+1とd-a=2(k+1)の場合で分ける理由がわかりません a,dの決め方が(1)でa=1~2n-(2k+1)の2n-(2k+1)通り、(2)でa=1~2n-2(k+1)の2n-2(k+1)通りとなるのもよくわからないです (1)と(2)でb,cの決め方はk通りと同じになるのも何故なのかわかりません Σ[k=1→n-1]{2n-(2k+1)}k+Σ[k=1→n-1]{2n-2(k+1)}kとかのkがn-1までなのが何故なのかわかりません 注の所はn=4の時2n=8ですから中点って4.5じゃないんですか?何故3.5と4の場合とか5.5と5の場合とかで考えるのがわからないのと3C2というのが何で出てくるのかと最後の4Σ[k=3→n](k-1)C2+nC2=4×nC3+nC2見たいな式が何で出てくるのか、とにかくサッパリわかりません

  • 場合の数

    4つの数字1,2,3,4だけからなるn桁の自然数の集合をUとする (1)1が現れないUの要素の個数を求めよ (2)1,2,3の3個の数字のどれもが少なくとも1個あらわれるUの要素の個数を求めよ (1)3^n (2)1が現れる集合、2が現れる集合,3が現れる集合をA、B、CとするとA∩B∩Cの個数をもとめるんですよね?やり方教えてください

  • 6-2 高校数学の確立の問題です

    各々1から10までの番号の付いた10個の白い球と同じく10個の赤い球の計20個が入った袋がある この袋から1つずつ順に4個の球を取り出すことにする ただし、一度取り出した球は袋に戻さないものとする このとき (1)4つめの球を取り出したときに初めて同じ番号の白球と赤球の対ができる確率をもとめよ (2)2つめに取り出した球の番号よりも4つめに取り出した球の番号のほうが大きくなる確率を求めよ 解説 (1)4個の球の順列は20/19/18/17通り(1)でこのうちで題意のようになるのは球の番号だけに着目するとabca,baca,bcaaの3タイプで各タイプの順列の個数を色も考慮して。まずは2個のaから数えると、どのタイプも20・1・18・16通り(2) よって求める確率は ((2)×3)/(1)=(16・3)/19・17=48/323  別解(1)くじ引き型の問題は一般に和積の法則を使わないで単に場合の数を数える解法がよいが本問は積の法則を使ったほうが考えやすい 求める確率は 20/20・18/19・16/18・3/17=48/323 (2)(1)の(1)のうちで題意のようになるのは、まず、2個目と4個目の番号の組み合わせ つぎに2個目と4個目の色 最後に1個目と3個目の球(番号および色)の順に考えると[10]C[2]・2^2・18・17=20/9・18・17通りである よって求める確率は9/19 (2)の別解 n個目の番号をa[n]とする (1)(1)の順列を、まずは2個目と4個目の番号の組み合わせを決めてから作ると考えると、明らかにP(a[2]<a[4])=P(a[2]>a[4])よって P(a[2]<a[4])=1/2×{1-P(a[2]=a[4])}=1/2×(1-1/19)=9/19 (注) (注)(2)の別解のP(a[2]=a[4])=1/19はまずa[2]、つぎにa[4]を決めると考えれば瞬間的に分かることですが、このように時間の順序を変えて考えてよいのは順列は好きな順序で数えてよいからです とあったのですが abca,baca,bcaaの3タイプあるとあるのですが、acbaは考えなくていいんですか? まずは2個のaから数えるとどのタイプも20・1・18・6通りとあるんですが、何故この掛け算になるのか分かりません最初の20は20個からどの番号を選ぶか20通りなので20と分かるんですが、次の1が分からないです、次の18は最初の球と2番目の球以外の18通りということでしょうか?次の6は何で6なのか分からないです 求める確立は((2)×3)/(1)の所で(2)×3の3は何で3を掛けるんですか? 別解?の積の法則を使って20/20×18/19×16/18×3/17=48/323の所の計算も何でこの計算になるのか分かりません (2)は2個目と4個目の番号の組み合わせ 次に2個目と4個目の色 最後に1個目と3個目の球 の順に考えると [10]C[2]×2^2×18×17=20×9×18×17通りってあるんですが ここも何でこんな計算になるのか分かりません (2)の別解で2個目と4個目の番号を組み合わせてから作ると考えるとP(a[2]<a[4])=P(a[2]>a[4])とあるんですがa[2]>a[4]とa[2]<a[4]が何で同じになってるのか分かりません よってP(a[2]<a[4])=1/2×{1-P(a[2]=a[4])}=1/2×(1-1/(19))の所なのですが P(a[2]<a[4])=1/2×{1-P(a[2]=a[4])}が成り立つのが分かりません、それとP(a[2]=a[4])が何故1/(19)になるのかも分からないです

  • 6-2 高校数学の確立の問題です

    6-2 高校数学の確立の問題です 各々1から10までの番号の付いた10個の白い球と同じく10個の赤い球の計20個が入った袋がある、この袋から1つずつ順に4個の球を取り出すことにする、ただし一度取り出した球は袋に戻さないものとする このとき (1)4つめの球を取り出したときに初めて同じ番号の白球と赤球の対が出きる確率を求めよ (2)2つめに取り出した球の番号よりも4つめに取り出した球の番号の方が大きくなる確立を求めよ 解説 (1)4個の球の順列は20・19・18・17通り(1)あり、これらは同様に確からしい (1)は6!を2^3で割ったものである つまり(1)の1つ1つは6!通りの順列を8個ずつ束にしたものと考えられる (1)のうち題意に適するのは{1,2}{1,3}{2,3}の3組を3人に配る場合で3!×8通り(2)(注) よって求める確立は(6×8)/(15×6×1)=8/15 (注)(2)で8をおとす人が非常に多いのですが単に3!通りでは同じ数字の2枚を同一視することになります(1)は勿論同一視しない数え方です なお題意の自称は3人とも同じの余事象ではないので1-1/5×1/3=14/15としないように 積の法則を使うならば 4/5×2/3=8/15と計算できます とあったのですが 解説の4個の球の順列は(1)とあるんですが、これは4個球を選ぶだけなので[20]C[4]じゃだめなんですか? abca,baca,bcaaの3タイプあるとあるのですが、acbaは考えなくていいんですか? まずは2個のaから数えるとどのタイプも20・1・18・6通りとあるんですが、何故この掛け算になるのか分かりません最初の20は20個からどの番号を選ぶか20通りなので20と分かるんですが、次の1が分からないです、次の18は最初の球と2番目の球以外の18通りということでしょうか?次の6は何で6なのか分からないです 求める確立は((2)×3)/(1)の所で(2)×3の3は何で3を掛けるんですか? 別解?の積の法則を使って20/20×18/19×16/18×3/17=48/323の所の計算も何でこの計算になるのか分かりません (2)は2個目と4個目の番号の組み合わせ 次に2個目と4個目の色 最後に1個目と3個目の球 の順に考えると [10]C[2]×2^2×18×17=20×9×18×17通りってあるんですが ここも何でこんな計算になるのか分かりません (2)の別解で2個目と4個目の番号を組み合わせてから作ると考えるとP(a[2]<a[4])=P(a[2]>a[4])とあるんですがa[2]>a[4]とa[2]<a[4]が何で同じになってるのか分かりません よってP(a[2]<a[4])=1/2×{1-P(a[2]=a[4])}=1/2×(1-1/(19))の所なのですが P(a[2]<a[4])=1/2×{1-P(a[2]=a[4])}が成り立つのが分かりません、それとP(a[2]=a[4])が何故1/(19)になるのかも分からないです

  • 数学の問題 場合の数と漸化式

    数学の問題 数字1,2,3をn個並べてできるn桁の数全体を考える。そのうち1が奇数回現れるものの個数をa(n)、1が偶数回現れるか全く現れないものの個数をb(n)とする。 a(n+1)、b(n+1)をa(n)、b(n)を用いて表せ。 という問題です。 説明された考え方 a(n+1)について 1が奇数回現れている数の一番左に1桁の数を加えるとすると 1が奇数回でないといけないから2か3である。 よって、2a(n) 1が偶数回現れている数の一番左に1桁の数を加えるとすると 1が偶数回でないといけないから1である。 よって、b(n) 以上より、a(n+1)=2a(n)+b(n) 同様にして、b(n+1)=a(n)+2b(n) が答えです。 解説を聞く前に自分で考えたその考え方は同じでした。 n桁の数に1桁の数を加えるというやり方です。 しかし、計算が違いました。 説明では、「一番左に1桁加える」として計算していますが 最初、n桁の数の場合、その数と数の間はn+1あるから そのn+1の間から一か所選んで、そこに2か3を入れる、そしてそれがa(n)個あるから a(n+1)=(n+1)C1 * 2 * a(n) + (n+1)C1 * 1 *b(n) を計算しました。 何がいけないのでしょうか? 一番左に加えると決めつけてしまってもいいのでしょうか? お願いします。

  • 五の語 高校数学の場合の数

    kが4以上の整数の時、方程式x+y+z=2k-1の正の整数の解について (1)x<=kを満たす正の整数解(x,y,z)の個数を求めよ (2)条件x<=k,y<=k+1,z<=k+2を満たす正の整数解(x,y,z)の個数を求めよ 回答 (1)x+y+z=2k-1の正の整数の解(x,y,z)の個数は図の2k-2本から2本を選ぶ方法の個数に等しく  [2k-2]C[2]個・・・(*)である このうちx<=kを満たさないもの、すなわち x+y+z=2k-1,x>=k+1,y>=1,z>=1⇔(x-k)+y+z=k-1,x-k>=1,y>=1,z>=1 を満たすものは[k-2]C[2]個あるから 答えは[2k-2]C[2]-[k-2]C[2]=(3k^2-5k)/2・・・(1) (2) 上の(*)の解の集合のうちx>=k+1,y>=k+2,z>=k+3をみたす部分集合をそれぞれ A,B,Cとすると求める個数は[2k-2]C[2]-n(A∪B∪C)である ここでA,B,Cは排反であるから n(A∪B∪C)=n(A)+n(B)+n(C)であり、これは(1)と同様に [k-2]C[2]+[k-3]C[2]+[k-4]C[2]・・(2)よって答えは(1)の結果(1)から[k-3]C[2]+[k-4]C[2] =(2k^2-16k+32)/2を引いたもので(k^2+11k-32)/2 注・・k=4,5のとき、(2)の3つのコンビネーションのなかに意味のないものが現れますが、そう言うものは(3)において0個としてカウントされているので(2)の結論はk>=4の範囲で使えます(k=3はだめ) とあったのですが(1)はx+y+z=2k-1の正の整数の解(x,y,z)の個数は図の2k-2本から2本を選ぶ方法の個数に等しく[2k-2]C[2]個・・・(*)であるとありますが、何でこんな事が言えるのかわかりません、x<=kを満たさないものが何で[k-2]C[2]個になるんですか? (2)はA,B,Cとすると求める個数は[2k-2]C[2]-n(A∪B∪C)であるの所ですが(A∩B∩C)じゃないですか?なんでAもBもCも含んでいいのかわからないです A,B,Cが排反になるのがわかりません、またn(A∪B∪C)が何で[k-2]C[2]+[k-3]C[2]+[k-4]C[2]になるんですか? (1)からなんで[k-3]C[2]+[k-4]C[2]=(2k^2-16k+32)/2を引いたものが求める値になるんですか?[k-2]C[2]も引かないといけなくないですか? 注の意味のなさないものというのは何のことでしょうか?