• 締切済み

高校数学 x2+y2+z2>x+y+zの証明

(L2+m2+n2)(x2+y2+z2)>(Lx+my+nz)2の証明という前の問題を利用して、 x+y+z>3のときx2+y2+z2>x+y+zが成り立つのを証明せよ、という問題です。 前の問題はできましたがこっちが今までにやったことのないタイプで解けません(泣)。 どうか至急お願いします。 問題中の>にはすべて=が付きます。

みんなの回答

  • gohtraw
  • ベストアンサー率54% (1630/2966)
回答No.1

x2というのはxの二乗のことですよね?だったらx^2と書くのが よろしいかと。 (L^2+m^2+n^2)(x^2+y^2+z^2)>(Lx+my+nz)^2 が証明できているなら、L=m=n=1のとき 3(x^2+y^2+z^2)>(x+y+z)^2 両辺を3で割って (x^2+y^2+z^2)>(x+y+z)^2/3 ・・・(1) x+y+z>3なので、 (x+y+z)^2/3=(x+y+z)(x+y+z)/3>x+y+z ・・・(2) (1)と(2)より (x^2+y^2+z^2)>x+y+z

3jhf
質問者

お礼

素早いご回答ありがとうございます。 大変助かりました! 二乗は^2ですね、なるほど。 なにせパソコン初心者なもので(笑)。 もう一度、わかりやすい解説ありがとうございました!

全文を見る
すると、全ての回答が全文表示されます。

関連するQ&A

  • x+y+z=0,2x^2+2y^2-z^2=0のとき,x=yであることを証明せよ。

    クリックありがとうございます(∩´∀`)∩  ★x+y+z=0,2x^2+2y^2-z^2=0のとき,x=yであることを証明せよ。 この問題について説明をお願いします。

  • (x+y-1)/(x-y)=(y+z-1)/(y-z)=(z+x-1)

    (x+y-1)/(x-y)=(y+z-1)/(y-z)=(z+x-1)/(z-x)のとき (1)x+y+z=3/2 (2)x^2+y^2+z^2=xy+yz+zx=3/4 (3){1/(x-1/2)^2}+{1/(y-1/2)^2}+{1/(z-1/2)^2}の値を求めよ。 (1)と(2)の値も問題で、上のような値になりました。 (3)は通分して、(1)と(2)をつかうと、分子が0になってしまい、明らかに答えとしては おかしい。(3)はどうすればよいのでしょうか。よろしくおねがいします。

  • 高校数学 式の証明

    説いている途中で分からなくなりました。 模範解答が省略されているため、 できれば考え方・途中式などあまり省略せずお願いできたらと思います。 ご解説をお願いいたします。 問題1 Q1、 3(ab+bc+ca)=abc a+b+c=3 のとき、 a,b,cのうち少なくともひとつは3に等しいことを証明せよ。 →「少なくともひとつは~の文から、(a-3)(b-3)(c-3)=0の形を作ればいい」ということは判りました。 問題2 x+y+z=a , x^3 + Y^3 + z^3 = a^3 のとき (x+Y)a^2 -a (x+y)^2 +xy(x+y)=0 が成り立つことを証明せよ。 そして、x,y,zのうち、少なくともひとつはaに等しいことを証明せよ。 →「少なくともひとつは~の文から、(x-a)(Y-a)(z-a)=0の形を作ればいい」ということは判りました。 問題3 (x+y)/z = (y+z)/x = (z+x)/y   のとき、この式の値を求めよ。 →(x+y)/z = K とおくことはわかりました。 解答である、「2」は出ましたが、もうひとつの解である「-1」がだせません。 問題4 1/a + 1/b +1/c = 1/(a+b+c)  のとき、次の証明をせよ。 ・(a+b)(b+c)(c+a)=0 ・n が奇数のとき  a^-1 + b^-1 + c^-1 = ( 1/a + 1/b +1/c )^n 問題4に至っては、全く何もわかりませんでした。悔しいです。 よろしくお願いします。

  • 1/x+1/y+1/z=1/2

    を満たすx、y、zの組(x、y、z)の中でxが最大となる組を求めよ ちなみにx、y、zはx<y<zになる自然数とする という問題で、1/2=1/x+1/y+1/z<1/x+1/x+1/x=3/xからx<6まで分かったんですがここからが分かりません! xが5のとき1/5+1/y+1/z=1/2⇔1/y+1/z=3/10と代入してみてもだからなんなのかが分からずこれ以上進めません 解説お願いします!

  • φ(x+?x,y+?y,z+?z)-φ(x,y,z)を一次の項まで展開

    φ(x+?x,y+?y,z+?z)-φ(x,y,z)を一次の項まで展開する問題について 何をどうすればいいのか分かりません。 どうすれば解けるのかヒントなど教えてください。

  • φ(x+Δx,y+Δy,z+Δz)-φ(x,y,z)を一次の項まで展開

    φ(x+Δx,y+Δy,z+Δz)-φ(x,y,z)を一次の項まで展開する問題について 何をどうすればいいのか分かりません。 どうすれば解けるのかヒントなど教えてください。

  • ≪問題≫実数x,y,zは関係式,x+y=2…(1),x^3+y^3+z^3

    ≪問題≫実数x,y,zは関係式,x+y=2…(1),x^3+y^3+z^3=8…(2)を満たす。 (1)x^2+y^2+z^2をzを用いて表せ。 (x+y+z)(x^2+y^2+z^2-xy-yz-zx)-3xyz=x^3^+y^3+z^3 の関係式を使ってみようかな。。。 って思ったんですが…できません^^; どなたかよろしくお願いします。

  • x+y+z=42のときできる三角形はいくつ?

    x+y+z=42のとき3つの自然数x,y,zを3辺の長さとする三角形はいくつできますか? という問題なんですか教えてもらえないでしょうか、、、 お願いします。

  • ¬(∀x∃y∀z(p))≡∃x∀y∃z(¬p)について。

    お世話になります。 よろしくお願いします。 ¬(∀x∃y∀z(p))≡∃x∀y∃z(¬p) の理解と証明ができずに困っています。 日本語的な解釈の仕方あるいは記号論理学での証明法あるいはお勧めの参考書などご存知の方がいましたら教えてください。 ちなみに ¬(∃x(p))≡∀x(¬p) は理解できてます。 よろしくお願いします。

  • (V: |x|+|y|+|z| <= 1)と(V: x+y+z <=

    (V: |x|+|y|+|z| <= 1)と(V: x+y+z <= 1; x>=0, y>=0, z>=0)は同じ意味? 次の多重積分を計算せよ。 ∫∫∫_V x dx dy dz V: |x|+|y|+|z| <= 1 という問題で、答えが 「x座標がxでyz平面に並行な平面によるVの切り口 |y|+|z| <= 1-|x| の面積は S(x) = 2(1-|x|)^2 で、 積分は∫[-1,1] x S(x) dx に等しく、被積分関数は奇。よって0。」となっています。 そこで質問ですが、 V: |x|+|y|+|z| <= 1 は V: x+y+z <= 1 x>=0, y>=0, z>=0 とまったく同じ意味でしょうか? 他の本に後者の形で定義された問題があったので応用できないかと考えています。

このQ&Aのポイント
  • 複数のファイルを印刷したところ、エラーが起こってプリンタキューにジョブが残りました。PC側で印刷キューを消せず困っています。
  • ブラザートップサポートの方法を試しましたが、ジョブが残ったままです。
  • プリンタ本体で印刷ジョブを表示し、強制削除する方法をご教示ください。
回答を見る