• 締切済み

複素関数の積分

C:原点を中心とする単位円の上半分に沿って1からiに至る曲線 ∫[c]z'dz z':zの共役複素数 この問題が解けないです   解説をお願いします ちなみに答えはπi/2です

みんなの回答

  • info222_
  • ベストアンサー率61% (1053/1707)
回答No.2

z=e^(iθ)とおくと z'=e^(-iθ), dz=i e^(iθ) dθ c→θ:0→π/2 であるから ∫[c]z'dz=∫[0→π/2] e^(-iθ) i e^(iθ) dθ  =∫[0→π/2] i dθ  =i [θ] [0→π/2]  =πi/2

  • yyssaa
  • ベストアンサー率50% (747/1465)
回答No.1

>z=cosθ+isinθとおくと dz=(-sinθ+icosθ)dθ z'=cosθ-isinθ だから ∫[c]z'dz=∫[θ=0→π/2](cosθ-isinθ)(-sinθ+icosθ)dθ =∫[θ=0→π/2](-sinθcosθ+icos^2θ+isin^2θ+sinθcosθ)dθ =∫[θ=0→π/2]idθ=i(π/2)

関連するQ&A

  • 複素関数の周回積分

    例えば、 ∫_[C]dz/(z^2+1) Cは原点を中心とする半径2の円を反時計回りに一周する周回積分 この問題は、 =(1/2i)∫_[C]dz/(z-i)-(1/2i)∫_[C]dz/(z+i) に変形して、左側はz=iを中心とした単位円、右側はz=-iを中心とした単位円を考えればいいんですよね? この場合、 =(1/2i)∫[0,2π](ie^iθdθ/e^iθ)-(1/2i)∫[0,2π](ie^iθdθ/e^iθ) =0 と計算終わってから気付いたのですが、単位円の範囲は0から2πではなく2πから0ではないのですか? 教科書などの説明では閉曲線Cの内側に閉曲線C'を考えるとき、C'はCの反対回りなので∫_[C]=∫_[-C']なんですよね?

  • 複素関数の積分

    (1)C:0から2+iに至る曲線 ∫[c](z^2-iz+2)dz (2)C:πから2πiに至る曲線 ∫[c]ze^(-z)dz この2問がどうしても解けないです 解説をお願いします

  • 複素積分についての質問です

    複素平面において、点√3iを始点とし、点-√3iを終点とする線分をC1とし、 また、{Re(z)≦0,|z|=√3}を満たす半円をC2とした場合(向きは反時計回り)、 (1)∫_{C1}(1/(1+z))dz (2)∫_{C2}(1/(1+z))dz (3)∫_{C1}(zの共役複素数)dz (4)∫_{C2}(zの共役複素数)dz を求めよといった問題について、 (1)∫_{-√3i}^{√3i}(1/(1+z))dz =log(1-√3i)-log(1+√3i) =log((1-√3i)/(1+√3i)) =log((-1-√3i)/2) =log1+iarg(4pi/3)=iarg(4pi/3) (2)∫_{C2-C1}(1/(1+z))dzは留数定理より、 =2pi*Res(1/(1+z),-1)=i2piとなるから、 ∫_{C2}(1/(1+z))dz=i*2pi-iarg(4pi/3) (3)∫_C1(x-iy)d(x+iy) =∫_{0}^{0}xdx-i∫_{√3i}^{√3i}ydy =-i[y^2/2]_{-√3i}^{√3i}=0 (4)∫_{C2-C1}(zの共役複素数)dzはこの領域内に 特異点を含まないから積分値は0になる。 したがって∫_{C2}(zの共役複素数)dz=0 として、求めたのですが、これであってますでしょうか? 一番の疑問点は、(1)と(2)では、経路の違いにより、 積分値が異なっていますが、(3)と(4)では、同じになって しまっていることです。 ご回答よろしくお願い致します。

  • 複素関数 積分 教えてください

    自分で解いてみたのですが結果がどうもおかしいのでどこかで間違っているのだと思います 解いていただけると助かります。 f(z) = 1/ z^2 C:原点中心半径1の円の上半分を実数軸の1からー1に移動する。 (1)Cに0≦t≦1のパラメーター表示を与え∫C f(z)dz を定義にしたがって計算せよ (2)∫C f(z)dzを(1)のように定義に戻ることなく原始関数を用いた方法でもとめよ

  • 複素積分の求め方。

    問題1 I=∫c (1/z^5)dz cは単位円|z|=1の上半分を点z=1からz-1までを回る曲線 問題2 A=∬D sin(2x+y)dxdy D:0≦x≦π/2,0≦y≦x 条件をどこでしようしていいのかわかりません。 どなたかお願いします。

  • 複素関数

    関数w=1/z' (z':zの共役複素数)について 円|z-3i|=1はどんな図形に移るか ちなみに答えは|w-3i/8|=1/8でした 解説をお願いします

  • 複素積分の問題です。

    教科書の問題からの抜粋ですが、答えが省略されていて分かりません。私のやり方と答えで良いのでしょうか?教えて下さい。 問、(2z+1)/(z^2-1)を次のかく点を中心とし、半径1の正方向の円に沿って積分せよ。 (1), z=1/3 (2), z=i 答え、  (1), z=1/3を中心として半径1の正方向の円にそっての積分範囲は、C={ z|-2/3≦z≦4/3 } であり、 与式=∫c(2z+1)/(z^2-1)dz=∫c(2z+1)/(z+1)*1/(z-1)dz と書ける。 ここで(2z+1)/(z+1)は曲線Cの内部で正則なので、コーシーの積分公式より z=1 と置いて、 ∫c(2z+1)/(z+1)*1/(z-1)dz=2πi*(2*1+1)/1+1=3πi (2), z=iを中心として半径1の正方向の円に沿っての積分範囲は、C={ z|0≦z≦2i } であり、 与式=∫c(2z+1)/(z^2-1)dz=∫c(1/z)*(2z^2+z)/(z^2-1)dz と書ける。 ここで(2z^2+z)/(z^2-1)は曲線Cの内部で正則なので、コーシーの積分公式より z=0 と置いて、 ∫c(1/z)*(2z^2+z)/(z^2-1)dz=2πi*0=0   特に(2)は自信がありません。以上お願いします。

  • 経路積分(複素数平面で)

    C:原点中心の単位円として、複素数α(|α|≠1)にたいして ∫c dz/(2πi) {1/(z-α)}がわかりません α=0のときが前問にあり、そのときはCが原点を囲めば1となり、Cが原点を囲まなければ、0と求められました。 z-αになると急にわからなくなり、図形的にもどこの経路を積分するのかあいまいになってしまい混乱しました。 回答よろしくお願いします。

  • 複素積分(コーシーの積分定理)について質問です

    zを複素数としする。コーシーの積分定理によれば「関数f(z)が領域Dで正則であるとして、領域D内の任意の閉曲線Cの内部が領域Dに含まれる場合、閉曲線Cに沿った関数f(z)の周回積分は0になる。」が成り立つと思います。 そこで次の問題を考えました。(zは複素数変数、aは実数の定数、iは虚数単位とする) 「原点を中心とする半径aの円を閉曲線Cとする。閉曲線Cに沿った、関数f(z)=1/(z-ai)の周回積分Iをを求める。」 閉曲線Cの内部で関数f(z)は正則だけれども、閉曲線Cは関数f(z)が正則でないz=aiの点を含んでいるのでコーシーの積分定理は利用できない。…(1) そこで、次のように積分を行うことにしました。閉曲線Cを複素数で表して、C:z=a*exp(iθ) (0≦θ≦2π) dz/dθ=ai*exp(iθ) よってI =∫f(z)dz =∫{ai*exp(iθ)/(a*exp(iθ)-ai)}dθ (積分範囲は0≦θ≦2π) ここで、[Ln(a*exp(iθ)-ai)](0≦θ≦2π)=0…(2) そこで質問です。 (1)は正しく、閉曲線の外周上に被積分関数が正則で無い部分があるなら、コーシーの積分定理は成立しないのでしょうか? (2)ln(z)は無限多価関数なので、どの複素関数の不定積分でもないと思ったので、Ln(z)を不定積分として用いたのですが、これは大丈夫なのでしょうか? ご回答よろしくお願いします。

  • 複素線積分

    複素数の線積分に関する問題です。 1/(2i)∫[L]z~dz=S を示せという問題です。 ただし、z~は複素数zの共役数で、 Sは複素平面上の閉じた経路Lで囲まれた部分の面積です。 どなたか、解答を教えてください。 どこから手を付けていいのか分かりません。