• 締切済み

文字が実数で基本対称式が正数なら元の文字は正数か

x∈R、y∈R、x+y∈R^+、xy∈R^+ ⇔ x∈R^+、y∈R^+ (⇐の証明)正の実数は加法と乗法で閉じている。 (⇒の証明)xy∈R^+ より、 (x、y)=(正、正)、(負、負) ここで、(x、y)=(負、負)と仮定すると、x+yは負となり矛盾 したがって、(x、y)=(正、正) ところで、 x∈R、y∈R、z∈R、x+y+z∈R^+、xy+yz+zx∈R^+、xyz∈R^+ ⇔ x∈R^+、y∈R^+、z∈R^+ は成り立つのでしょうか? 反例、または証明を教えていただきたいです。 証明は、できれば、3次に限らずに一般に成り立つような方法を教えていただきたいです。

みんなの回答

  • ramayana
  • ベストアンサー率75% (215/285)
回答No.1

一般に n 次で成立します。 次の命題を証明すれば十分です。以下、[ ] で括って添字を表します。 ******** 命題 実数係数の n 次多項式   f(X; n)=a[n]X^n + a[n-1]X^(n-1) + ・・・ + a[0] において、 (1)  i が奇数のとき a[n-i] < 0 (2)  i が偶数のとき a[n-i] > 0 を満たすなら、f(X; n) は負の実数根を持たない。 ******** 証明 帰納法による。n = 1 のとき、命題が成立することは明らか。 n = k-1 のとき命題が成立したとする。 f(X; k) が命題の仮定(1)(2)を満たしたする。すると、f(X; k) の導関数 f'(X; k) も、n = k-1 として、(1)(2) を満たす。すると、帰納法の仮定により、 f'(X; k) = 0 は、負の実数根を持たない。すなわち、 X の関数 f(X; k) は、X<0 において単調減少又は単調増加である。 k が奇数か偶数かで分けると、次のようになる。 (3)  k が奇数のとき、 f(X; k) は、X<0 において単調増加であって、f(0; k) = a[0] < 0 (4)  k が偶数のとき、 f(X; k) は、X<0 において単調減少であって、f(0; k) = a[0] > 0 よって、k が奇数でも偶数でも、 f(X; k) = 0 は、負の実数根を持たない。(証明終わり)

gadataharaua
質問者

お礼

ありがとうございました。

関連するQ&A

  • 文字が整数で基本対称式がp倍なら元の文字はp倍か

    x∈Z、y∈Z、x+y∈pZ、xy∈pZ ⇔ x∈pZ、y∈pZ (ただしpは素数) (⇐の証明)pの倍数は加法と乗法で閉じている。 (⇒の証明)xy∈pZ より、 xyはpの倍数 xy/pは整数 xはpの倍数、または、yはpの倍数 xがpの倍数のときを考える。x+y∈pZより、 x+yはpの倍数 yはpの倍数 yがpの倍数のときを考えても同様。 ところで、 x∈Z、y∈Z、z∈Z、x+y+z∈pZ、xy+yz+zx∈pZ、xyz∈pZ ⇔ x∈pZ、y∈pZ、z∈pZ (ただしpは素数) は成り立つのでしょうか? 反例、または証明を教えていただきたいです。 証明は、できれば、3次に限らずに一般に成り立つような方法を教えていただきたいです。

  • 対称式

    こんにちは。 よろしくお願いいたします」。 x+y+z=2√3,xy+yz+zx=-3 xyz=-6√3 を満たす実数x,y,zについて次の式の値を求めよ。 (1)x^2/yz+y^2/zx+z^2/xy (2)x^4+y^4+z^4 (1)はできたのですが、(2)がとき方すらわかりません。 答えは(1)-4,(2)162 です。 教えてください。 よろしくお願いいたします。

  • 3文字の対称式

    こんばんは。 よろしくお願いいたします。 x+y+z=xy+yz+zx=2√2+1,xyz=1を満たす実数x,y,zにたいして次の式の値を求めよ。 (1)1/x+1/y+1/z (2)x^2+y^2+z^2 (3)x^3+y^3+z^3 長い時間考えたのですが、x+y+zを分数に変えてみたりいろいろしたのですが、数学が苦手なためうまくいきませんでした。。 答えはそれぞれ (1)2√2+1 (2)7(3)10√2+1 です。 解法がまったくといってよいほど思い浮かびません。 教えてください。よろしくお願いいたします。

  • 数学 対称式

    x^3+y^3+z^3を x+y+z xy+yz+zx xyz で表すには x^3+y^3+z^3-3xyz=(x+y+z)(x^2+y^2+z^2-xy-yz-zx) とわかるのですが なぜこのように 因数分解出来るのですか? このように因数分解する 『過程』を 面倒ですが、 教えていただきたいです。

  • 文字が有理数で基本対称式が整数なら元の文字は整数か

    x∈Q、y∈Q、x+y∈Z、xy∈Z ⇔ x∈Z、y∈Z (⇐の証明)Z⊂Qより。 (⇒の証明)a=x+y∈Z、b=xy∈Zとおく。 x、yはt^2-at+b=0の解 x、y={a±√(a^2-4b)}/2 x、y∈Qなので、√(a^2-4b)∈Q (a^2-4b)は平方数で、(a^2-4b)=c^2(ただしc>0)とおくと、 x=(a+c)/2、y=(a-c)/2 ここで、xy=(a^2-c^2)/4∈Zなので、 a、cはともに偶数かともに奇数。 よって、x=(a+c)/2∈Z、y=(a-c)/2∈Z ところで、 x∈Q、y∈Q、z∈Q、x+y+z∈Z、xy+yz+zx∈Z、xyz∈Z ⇔ x∈Z、y∈Z、z∈Z は成り立つのでしょうか? 反例、または証明を教えていただきたいです。 証明は、できれば、3次に限らずに一般に成り立つような方法を教えていただきたいです。

  • 数学 対称式

    x^4+y^4+z^4の式をx+y+z、xy+yz+zx、xyzを使ってあらわしてください。 どなたか宜しくお願いします。

  • 3変数の基本対称式に関する不等式って?

    2変数の基本対称式 u=x+y v=xy において、xとyが実数のとき、x,yを解とする方程式 0=(t-x)(t-y)=t^2-ux+v の判別式が0以上なので、 u^2-4v≧0 が成り立ちます。なおx,yが正のとき、この不等式は相加相乗平均の関係を意味します。 では3変数のときはどうなるのでしょうか? u=x+y+z v=xy+yz+zx w=xyz において、xとyとzが実数のとき、x,y,zを解とする方程式 0=(t-x)(t-y)(t-z)=t^3-ux^2+vx-w において、3つの実数解をもつということは、2つの極値の積が負ということですが、そのときu,v,wの間にはどのような不等式が成り立つのでしょうか?

  • 数学A 命題の証明

    x,y,zは0でない実数とする。A=x+y+z B=xy+yz+zx C=xyzとする。 (P) A=0ならば、B<0である。 (Q) A,B,Cがすべて正ならば、x、y、zはすべて正である。 (R) x、y、zのうち1つだけが正ならば、A<0 または B≦0である。 (1)(P)を証明せよ。 (2)(Q)の成立を仮定して、(R)を証明せよ。 (3)(Q)を証明せよ。 (1)はわかったので、2番以降の解説をお願いします。 ちなみに2番は対偶で考えるように言われました。 3番は xyzのうち(1つだけが正、2つが負)ではないことを示せばよいそうです ご回答お願いします。

  • 相加・相乗平均の関係を使った不等式の証明

    不等式の証明で、 x,y,zが正の実数で、xyz>1のとき x^2y+y^2z+z^2x>xy+yz+zx となることを証明せよ、という問題なのですが、 おそらく左辺を3項の相加・相乗平均の関係を使って 左辺≧3xyzを使うのだろうということ以外分かりません。 ご教授お願いします。

  • 3次の対称式について

    高校数学を勉強しております。 対称式に関連して、 x^3+y^3+z^3=(x+y+z){x^2+y^2+z^2-(xy+yz+zx)}+3xyz という公式がどのようにして導かれたものなのか知りたいのですが、どなたかヒントいただけないでしょうか? (x+y+z)^3を展開してみるなどして試行錯誤してみたのですが、どうもうまくいきません。 よろしくお願いいたします。