• 締切済み

文字が有理数で基本対称式が整数なら元の文字は整数か

x∈Q、y∈Q、x+y∈Z、xy∈Z ⇔ x∈Z、y∈Z (⇐の証明)Z⊂Qより。 (⇒の証明)a=x+y∈Z、b=xy∈Zとおく。 x、yはt^2-at+b=0の解 x、y={a±√(a^2-4b)}/2 x、y∈Qなので、√(a^2-4b)∈Q (a^2-4b)は平方数で、(a^2-4b)=c^2(ただしc>0)とおくと、 x=(a+c)/2、y=(a-c)/2 ここで、xy=(a^2-c^2)/4∈Zなので、 a、cはともに偶数かともに奇数。 よって、x=(a+c)/2∈Z、y=(a-c)/2∈Z ところで、 x∈Q、y∈Q、z∈Q、x+y+z∈Z、xy+yz+zx∈Z、xyz∈Z ⇔ x∈Z、y∈Z、z∈Z は成り立つのでしょうか? 反例、または証明を教えていただきたいです。 証明は、できれば、3次に限らずに一般に成り立つような方法を教えていただきたいです。

みんなの回答

  • ramayana
  • ベストアンサー率75% (215/285)
回答No.1

n 次の場合でも、一般に成立します。 x1、x2、・・・ 、xn がすべて有理数で、それらの基本対象式がすべて有理整数とします。これらは、有理整数を係数として n 次の項の係数が 1 の多項式の根ですから、代数的整数です。もともとこれらが有理数であるという仮定があるので、有理整数であること分かるのです。 高木貞治「代数的整数論」に詳しい証明があります。

gadataharaua
質問者

お礼

ありがとうございました。

関連するQ&A

  • 文字が整数で基本対称式がp倍なら元の文字はp倍か

    x∈Z、y∈Z、x+y∈pZ、xy∈pZ ⇔ x∈pZ、y∈pZ (ただしpは素数) (⇐の証明)pの倍数は加法と乗法で閉じている。 (⇒の証明)xy∈pZ より、 xyはpの倍数 xy/pは整数 xはpの倍数、または、yはpの倍数 xがpの倍数のときを考える。x+y∈pZより、 x+yはpの倍数 yはpの倍数 yがpの倍数のときを考えても同様。 ところで、 x∈Z、y∈Z、z∈Z、x+y+z∈pZ、xy+yz+zx∈pZ、xyz∈pZ ⇔ x∈pZ、y∈pZ、z∈pZ (ただしpは素数) は成り立つのでしょうか? 反例、または証明を教えていただきたいです。 証明は、できれば、3次に限らずに一般に成り立つような方法を教えていただきたいです。

  • 文字が実数で基本対称式が正数なら元の文字は正数か

    x∈R、y∈R、x+y∈R^+、xy∈R^+ ⇔ x∈R^+、y∈R^+ (⇐の証明)正の実数は加法と乗法で閉じている。 (⇒の証明)xy∈R^+ より、 (x、y)=(正、正)、(負、負) ここで、(x、y)=(負、負)と仮定すると、x+yは負となり矛盾 したがって、(x、y)=(正、正) ところで、 x∈R、y∈R、z∈R、x+y+z∈R^+、xy+yz+zx∈R^+、xyz∈R^+ ⇔ x∈R^+、y∈R^+、z∈R^+ は成り立つのでしょうか? 反例、または証明を教えていただきたいです。 証明は、できれば、3次に限らずに一般に成り立つような方法を教えていただきたいです。

  • お願いします

    x+y+z=a, xy+yz+zx=b , xyz=cとおくとき x^3 + y^3+ z^3をa,b,cを用いて表すことがわかりません。 因数分解など考えたのですがわからなくて 答はa^3 -3ab +3c ^2+y^2+z^2=(x+y+z)^2-2xy-2yz-2zx x^3+y^3+z^3=(x+y+z)(x^2+y^2+z^2-xy-yz-zx)+3xyz からどのように代入するかよくわからなくて (x^2+y^2+z^2-xy-yz-zx)がもうすこまとまれそうな感じがするのですが 例えば(x-y)^2・(y-z)^2・ (z-x)^2 のような感じで でもわかりません おねがいします

  • 3文字の対称式

    こんばんは。 よろしくお願いいたします。 x+y+z=xy+yz+zx=2√2+1,xyz=1を満たす実数x,y,zにたいして次の式の値を求めよ。 (1)1/x+1/y+1/z (2)x^2+y^2+z^2 (3)x^3+y^3+z^3 長い時間考えたのですが、x+y+zを分数に変えてみたりいろいろしたのですが、数学が苦手なためうまくいきませんでした。。 答えはそれぞれ (1)2√2+1 (2)7(3)10√2+1 です。 解法がまったくといってよいほど思い浮かびません。 教えてください。よろしくお願いいたします。

  • 数学A 命題の証明

    x,y,zは0でない実数とする。A=x+y+z B=xy+yz+zx C=xyzとする。 (P) A=0ならば、B<0である。 (Q) A,B,Cがすべて正ならば、x、y、zはすべて正である。 (R) x、y、zのうち1つだけが正ならば、A<0 または B≦0である。 (1)(P)を証明せよ。 (2)(Q)の成立を仮定して、(R)を証明せよ。 (3)(Q)を証明せよ。 (1)はわかったので、2番以降の解説をお願いします。 ちなみに2番は対偶で考えるように言われました。 3番は xyzのうち(1つだけが正、2つが負)ではないことを示せばよいそうです ご回答お願いします。

  • 数学の質問

    x+y+z=a、a(xy+yz+zx)=xyzが成り立つとき、x、y、zのうち 少なくとも1つはaであることを証明せよ。 このとき、x+y+z=a , a(xy+yz+zx)=xyz から (x+y+z)(xy+yz+zx)-xyz=0 これを展開して、因数分解すると、 (x+y)(y+z)(z+x)=0 x+y+z=aから (a-z)(a-x)(a-y)=0 と解説があったのですが、 (x+y)(y+z)(z+x)=0 x+y+z=aから (a-z)(a-x)(a-y)=0 の部分がよくわかりません。なぜ、x+y+z=aならば(a-z)(a-x)(a-y)=0 なんでしょうか。

  • この証明問題は

    xyz=1のとき、{x/(xy+x+1)}+{y/(yz+y+1)}+{z/(zx+z+1)}=1が成り立つことを証明するとき、どのようにすればよいでしょうか。

  • 因数分解

    x+y+z=3-(1),1/x+1/y+1/z=1/3-(2)のとき x^3+y^3+z^3=? という問題なのですが行き詰ってしまいます。(すみません簡単な問題で><) (2)の式の両辺に3xyzをかけて 3(xy+yz+zx)=xyz として解こうとしています。 x^3+y^3+z^3 =x^3+y^3+z^3-3xyz+3xyz =(x+y+z)(x^2+y^2+z^2-xy-yz-zx)+3xyz =(x+y+z)(x+y+z)^2-3xy-3yz-3zx+3xyz =(x+y+z)^3-xyz+3xyz となって分からなくなっています。この式の間違いを指摘してください。そしてやり方を教えてください。当方高校2年です。

  • 証明です

    x+y+z=1、xy+yz+zx=xyz のとき x、y、z のうち 少なくとも1つが1に等しいことを 証明せよ。 どなたか回答お願いします。

  • 数学 対称式

    x^3+y^3+z^3を x+y+z xy+yz+zx xyz で表すには x^3+y^3+z^3-3xyz=(x+y+z)(x^2+y^2+z^2-xy-yz-zx) とわかるのですが なぜこのように 因数分解出来るのですか? このように因数分解する 『過程』を 面倒ですが、 教えていただきたいです。