• 締切済み

量子力学 統計力学 密度行列について

密度行列について自分は以下のように考えました.間違っていましたら,教えていただけると助かります.また他のとらえ方もありましたら教えていただけるとうれしいです. 密度行列というのは系の状態を表すものであり,非対角成分は系の状態が時間変化する可能性を陰に表わしており,0である場合は平衡状態と考えられる.対角成分は同じ状態に時間変化する可能性を陰に表わしている.

  • masics
  • お礼率92% (241/261)

みんなの回答

回答No.1

密度行列は複数の状態が混ざる割合のことで、時間変化とは無関係だと思います。時間変化はハミルトニアンで現されます。ハミルトニアンの行列成分を「密度行列」と呼ぶことは無いと思います。 ハミルトニアンを行列表示するときは、ハミルトニアンの固有状態を基底ベクトルとして状態ベクトル(波動関数)を成分に分解します。この基底ベクトルは一定のエネルギーの状態です。 一方、密度行列を考えるときの状態は、必ずしも一定のエネルギーを持つ状態で無くとも良い気がします。ここで、密度行列を考える時の状態としてハミルトニアンの固有状態を採用すれば、話が簡単になる利点があると思います。

masics
質問者

お礼

ちょっとわからないです.

関連するQ&A

  • (量子力学)密度行列は実対称行列ですか?

    密度行列が実対称行列かどうかで悩んでいます。 [参考URL] http://militzer.gl.ciw.edu/diss/node13.html 一番簡単な密度行列の例を考えます。 rho(x;y) = <psi(x)|psi(y)> psi(x)は多体波動関数とします。 ここで、例えば上記URLのサイトには、「任意のエルミートなハミルトニアンに対しては、rho(x;y)=rho(y;x)である」とかかれています。 しかし、rho(x;y)=rho(y;x)であるためには、密度行列が実対称行列である必要があるように見えます。 <psi(x)|psi(y)>=<psi(y)|psi(x)>であるためには、<psi(x)|psi(y)>は実数でなければならないからです。 このような表記は他の論文にも見られまして、かの有名なkohnさんの論文Phys Rev Lett 76 3168(http://prola.aps.org/pdf/PRL/v76/i17/p3168_1)の2ページ目第8式に同様の記述があります。 密度行列ははたして実対称行列なのでしょうか? なお、孤立系の様に波動関数が実数のみで表現できてしまう場合は除きます。三次元周期系のような場合を考えています。 よろしくお願いします。

  • 熱力学第2法則の統計力学的説明。

    熱力学の第2法則の統計力学的な説明ってどうなるのでしょうか? S=klnW W:状態数 において、状態数が最大な場合はもっとも実現しやすいからというのは 理解してます。ただしこれは状態数のすくない状態(非平衡)より状態数の 多い状態の方が実現しやすい。すなはち、「平衡状態では状態数が最大化する。」という説明です。 この説明は、非平衡状態と平衡状態を比較して、後者が実現しやすいというものであり、非平衡な状態から出発してエントロピーが時間的に変化して 最終的に最大化するまでの間の時間変化には触れていません。 私が疑問なのは、この間のエントロピーの時間発展をどう説明するのか? というものです。 例題として念頭においてるのは非平衡な状態から平衡状態への系の緩和過程 を考え、その間のエントロピーの時間変化を追って、「エントロピーが増えるでしょう」という説明が可能か?というものです。 もともとは平衡状態定義されたエントロピーという概念を非平衡系 にも拡張して理解しないといけないという困難がつきまとう問題で、 単純にはエントロピーを S=S(q ,p): q,pは相空間上の点 のようにミクロな量として定義してその時間発展を追えばよさそうで、 実際、エントロピーを何か 微視状態の平均として定義する方法は あり、 S=k∫ρ(q p)lnρ(q p) :ρ(qp)は確率密度関数。 と定義できるのですが、愚弟的にこの定義で非平衡状態からの時間変化を 追う方法がよく分りません。 また本質的な問題として、上の定義はρ(qp)で時間発展が決まりますが、 ρはリウビルの定理から時間反転に対象であり、そもそも不可逆過程を 表現する式になっていません。 ここ数年ことあるごとに気になっていますが、いまだに分りません。 みなさまのご意見お待ちします。

  • 上三角行列同士をかけたときの積も上三角行列となることを示すには?

    正方行列AとBがともに上三角行列であるとき、積ABもまた上三角行列となることを示せ。 という問題がわかりません。 自分で解こうとしましたが、以下のような状態で、証明できていません(^_^;) 行列式|A|はAの対角成分を掛け合わせたもの。同様に行列式|B|はBの対角成分を掛け合わせたものになっている。また、|AB|=|A||B|より、積ABの行列式はAとBの全ての対角成分を掛け合わせたものとなる。よって、|AB|はAとBの対角成分のみから構成されているので、積ABもまた上三角行列である???

  • 行列の非対角成分

    量子力学で演算子を行列化するさいには、演算子の固有状態を用いると 行列は対角化され、対角成分はそれぞれ平均値になります。ここで状態に演算子の固有状態以外を選ぶと非対角成分があらわれます。この非対角成分の物理的な意味は何なのでしょうか。どなたか説明をお願いします。

  • 行列の固有値とトレースについて

    問 正方行列のトレース(対角成分の和)は、その固有値の総和になる。 この問題は行列が対角化可能ならば成り立ちますが、対角化不可能の場合でも成り立つのでしょうか? ご指導よろしくお願いします。

  • 逆行列の値を求める問題です

    3次正方行列001        020        300 の逆行列を求めてください。 この場合、「対角行列の逆行列は、各成分の逆数になる」は使えないですよね? そもそも対角行列ではないですし。答えは 001/3  01/20  100

  • 行列の対角化

      ┌1 -2 -2┐ A=│1  2  2│   └(-2) 2  1┘ という行列なのですが、対角化できるのでしょうか? 何度も何度も解きなおしてるんですけど対角化できません。 Aの固有方程式の解で重解になっているものがないので対角化は・・可能ですよね? 固有値として-1、±√7が求まるのですが、±√7に対する固有空間を考えるとどうしても固有ベクトルとして成分がすべて0の(3,1)行列しか出てこなく、対角化行列が   ┌0 0 0┐ P=│1 0 0│    └(-1) 0 0┘ といったような行列になってしまうのですが、この場合P^(-1)が存在しないためP^(-1)*A*Pは存在しない事になり、Aは対角化不可能ということになってしまいますよね?? 多分どこか間違った理解をしているところがあると思います。 どなたかご教授お願いできないでしょうか?

  • 行列

    行列A、B、C…をそれぞれ成分が全て正の行和が0の対称行列とし、 行列Xを対角成分に左上からA,B,C,,,と並べて他全て0の行列とすると、 Xの固有値0に対する固有ベクトルが (λA、λA、、、λB、λB、、、λC、λC、λC、、、)に限ることの証明を、 どなたかお願いします。

  • 分からない行列式の問題を教えてください

    次のような行列式の問題がありました。(2問あります) (1)100次正方行列で、右下がりの対角成分が全て3で、他が全て0である行列を考える。 この時、この行列の行列式の値を求めろ。 ヒント:行展開と列展開とのどちらを使ってもよい (2)100次正方行列で、右上がりの対角成分が全て3で、他が全て0である行列を考える。 この時、この行列の行列式の値を求めろ。 ヒント:行展開と列展開と行列式の性質(行または列を一組入れ替えると符号が反転する)とのどれを使ってもよい これらのそれぞれ答えは、 (1)3^100 (2)- 3^100 となっています。 (1)に関しては多分自分で考えた方法であっていると思うのですが、(2)に関しては自分の答えは(1)の答えと同じ3^100になってしまい、本に載っている解答と異なってしまいました。 私が考えたやり方は、(2)で与えられた行列の第1列と第100列、第2列と第99列、第3列と第98列、・・・、第50列と第51列を入れ替えて(計50回、列を入れ替えて)、符号(-1)^50とくっつけて、(1)で考えたときの行列式と同じ形に持っていき(符号は結局、正になるので)、(1)の答えと同じとしたのですが、これは間違いなのでしょうか? それとも問題集の答えのミスでしょうか? 詳しい方解説お願いします。

  • 量子力学の問題

    量子力学の問題 次の問題に答えられません。 解等を教えていただけるとうれしいです。 --- ハミルトニアンが2行2列の行列(1)式で与えられている。 ただしωとθは定数である。以下の問いに答えよ。 (1)Hの固有値E+,E-と、それぞれの固有値に対応する規格化された固有ベクトルψ+、ψ-を求めよ。 (2)シュレティンガー方程式を満たす、時刻tにおける状態ベクトルψ(t)をE+、E-とψ+、ψ-を用いてあらわせ。さらに、初期状態を(2)式として、ψ(t)をωとθであらわせ。 (3)上記(2)の量子状態に対して時刻tにおいて測定を行い、(3)を得る確率を求めよ。 (4)このハミルトニアンは、磁気モーメントμを持つ1/2スピンの粒子が、磁束密度Bにおかれた場合の量子力学を記述する。θの幾何学的な意味を述べて、ハミルトニアン(1)のパラメータωをμとBで表せ。参考としてパウリ行列は(4)である。