関数と等しいというのは合っていますか?

このQ&Aのポイント
  • 関数Y=f(X)とX=f(Y)は関数として、等しいというのは合っていますか?
  • f(X)=e^X/(e^X+1)のとき、y=f(X)の逆関数y=g(X)を求めよ。
  • (1)f(X)=e^X/(e^X+1)のとき、y=f(X)の逆関数y=g(X)を求める。また、(2)(1)のf(X)、g(X)に対し、(A)∫(a~b)f(X)dx+∫(f(a)~f(b))g(X)dx=bf(b)-af(a)を示せ。
回答を見る
  • ベストアンサー

関数

関数 y=f(x)とx=f(y)は関数として、等しいというのは合っていますか? また、(1)f(x)=e^x/(e^x+1)のときy=f(x)の逆関数y=g(x)を求めよ。 (2)(1)のf(x)、g(x)に対し、 (A)∫(a~b)f(x)dx+∫(f(a)~f(b))g(x)dx=bf(b)-af(a)をしめせ。 (解答) f(x)の値域は、0<y<1{(e^x)+1}y=e^x (1-y)e^x=y⇔x=log(y/1-y) xとyを入れ替えて、g(x)=log(x/1-x) (2)I=∫(f(a)~f(b))g(x)dxとする。 f(x)はg(x)の逆関数だから、y=g(x)より、x=f(y) dx=f‘(y)dy また、g(f(a))=a,g(f(b))=bとあるのですが、 これらは、y=g(x)とx=f(y)を合成したものだ、としても、本質的には、問題ないですよね

  • tjag
  • お礼率43% (282/650)

質問者が選んだベストアンサー

  • ベストアンサー
  • naniwacchi
  • ベストアンサー率47% (942/1970)
回答No.1

こんにちわ。 >y=f(x)とx=f(y)は関数として、等しいというのは合っていますか? 「等しい」という表現は好ましくないとは思いますが、言わんとせんことは合ってると思います。 f(なんとか)というブラックボックスがあって、そこに変数が与えられるだけです。 f(x)= x^2-3xも f(t)= t^2- 3tも関数としては同じです。 (1) せっかく値域を求めているので、g(x)の定義域がどうなっているかは確認しておく方がよいでしょう。 (2) g(x)= f^(-1)(x)と書いた方がわかりやすいかもしれません。 被積分関数について、f^(-1)(x)= uと置換することを考えます。 すると、x= f(u)となり、dx= df(u)/du・duとなります。 さらに、x= f(a)に対して u= f^(-1)(f(a))= a、x= f(b)に対して u= f^(-1)(f(b))= bとなるので、  I= ∫[a→b] u・df(u)/du du ここへ部分積分を適用すれば、  I= [ u・f(u) ][a→b]- ∫[a→b] f(u) du となって、与式の第1項と相殺される項が現れます。 わざわざ、g(x)と書いて混乱させているようにも思えますね。

関連するQ&A

  • 逆関数を利用した定積分の計算

    参考書の模範回答を読んでも分からなかったので質問します。 f(x)=log[{-1+√(1+4x)}/2]とおき、関数y=f(x)(x≧2)とその逆関数y=g(x)(x≧0)について考える 問1:g(x)をxの式で表せ 問2:a≧2のとき、∫[2,a]f(x)dx=af(a)=∫[0,f(a)]g(x)dxを示せ 問1は分かりました。 g(x)=e^(2x)+e^x(x)(x≧0) 問2について(模範回答より) y=f(x)に対し、x=g(y)であるからdx=g'(y)dy f(x)はx≧2に於いて増加関数である。 a≧2のとき、xとyの対応は次のようになる x:2 --> a y:0 --> f(a) ∫[2,a]f(x)dx = ∫[0,f(a)]y*g'(y)dy = [y*g(y)]_|y=0,f(a)|-∫[0,f(a)]g(y)dy = f(a)*g(f(a))-∫[0,f(a)]g(y)dy ・・・(1) = a*f(a)-∫[0,f(a)]g(x)dx ・・・(2) なぜ(1)から(2)が導かれるのか教えてください。 (1)の∫[0,f(a)]g(y)dyが(2)の∫[0,f(a)]g(x)dxになるのは おそらく「定積分は、関数の形と上端、下端の値で決まり、変数に取った文字には無関係」、つまり 「∫[a,b]f(x)dx = ∫[a,b]f(t)dt」から導かれるのでしょうが(間違っていたら指摘してください)、 (1)のf(a)*g(f(a))が(2)のa*f(a)になるのが理解できません。 おねがいします。

  • 逆関数の導関数

    dy/dx=1/dx/dy ↑より、y=f(x)の逆関数x=g(y)の微分可能性については、逆関数を具体的に求めなくても判定できる。 すなわち  x0⇔f(x0) (→がf,←がg) (適した記号が見つからなかったので、同値記号で勘弁してください。) 「f'(x0)≠0ならばfの逆関数gはf(x0)で微分可能で g'(f(x0))=1/f'(x0) であることを示してる。」 と書いてあったのですが、よくわかりません。 なぜ、そのようなことがいえるのでしょうか? 全体的にわかりません、解説よろしくお願いします。

  • 指数関数の導関数の公式

     「指数関数 x=e^y は対数関数 y=logx の逆関数だから、逆関数の導関数の公式と対数関数の導関数の公式 dy/dx=1/x を用いるとdx/dy=1/(dy/dx)=1/(1/x)=x=e^yとなり、指数関数の導関数の公式(e^y)'=e^yが得られる、○か×か」という問題がわからないのですが、教えて下さい!

  • 合成関数の積分

    こんにちは。積分法に関する質問です。 gが(a,b)において連続[a,b]において微分可能とし、g´(x)>0で、fもgの値域においては連続とするとき ∫f(g(x))g´(x)dx(積分範囲はaからb)=∫f(y)dy(積分範囲はg(a)からg(b))が成り立つことを示し、(Fоg)´(x)を計算せよという問題です。((Fоg)は合成関数) 今ヒントが与えられていて g(a)≦y≦g(b)において F(y)= ∫f(t)dt(積分範囲はg(a)からy)と置く。とあるのですが、このヒントをどう使うのかが分かりません。 それと(Fоg)´(x)の計算もお手上げです。 どなたかヒントよろしくお願いします。

  • 逆関数の微分 (数III)

    (x^3)'=3x^2 dy/dx=1 dx/dyを用いてy=x^3の逆関数y=f(x)の導関数を求めよ。 dx/dyを使わなくていいなら・・・ x=y^(1/3)として x'=1/3x^(2/3) という風にすぐもとまるのですが・・・。 模範解答は y=f(x)についてはx=y^3であり、・・・(1) y=x^(1/3) df(x)/dx =1/(dx/dy)・・・(2) =1/3y^2 = 1/3x^(2/3)・・・ (3) 疑問点があるところに○で番号を振りました。 (1)について、 逆関数とはy=~ という関数x=~という風に書き換えてからx,yを入れ替えるものですよね? (2)f(x)はy=x^3の逆関数なんですよね?  ってことはf(x)の逆関数は1/f(x)でありf(x)ってのはyの逆数であるから1/yがf(x)? なんか混乱してしまいました・・・(すみません汗 (3)y=x^(1/3) を代入したのでしょうか・・・?これってy=x^3の逆関数ですよね・・・? 模範解答の作業中にいつのまに逆関数y=x^(1/3)を求めたのでしょうか・・・? 回答よろしくおねがいします!

  • 微分の計算(記号の使い方)

    f(x)の逆関数をg(x)とする。f(1)=2、f‘(1)=2、f‘‘(1)=3のとき、g‘‘(2)の値をもとめよ。 y=g(x)とすると、f(x)はg(x)の逆関数だから、x=f(y)ゆえに、dx/dy=f‘(y)。 よって、g‘(x)=dy/dx=1/f`(y) g‘‘(x)=(d/dx)(g`(x))=(d/dy)(1/f`(y))(dy/dx) (疑問) 私はg‘‘(x)=(d/dx)(g`(x))=(d/dy)(1/f`(y))(dy/dx)の部分で、(d/dy)(1/f`(y))(dy/dx)=(d/dy)(1/(f`(y))^2)としてしまいました。 (d/dyをdy/dxにも適用してしまった)調べたところ、d/dyは直後の関数のみに適用するそうです。そうすると、(d/dy)(1/f`(y))(dy/dx)の変形のところで、私は分数のように考えてこの式へ変形したのですが、dy/dxは1/f`(y)の直後に書かなくてはならないですよね?(分数といっても交換して(d/dy)(dy/dx)(1/f`(y))のようにしてはダメ。) 合成関数の微分法で、分数のように変形する場合は直後に付け加えていくということでしょうか?

  • 多変数関数f(x,y)の多変数関数g(x,y)による微分∂f/∂gを計

    多変数関数f(x,y)の多変数関数g(x,y)による微分∂f/∂gを計算するには? xとyに関する多変数関数f(x,y)と、g(x,y)が与えられたとき、微分∂f/∂gを計算するにはどうしたらよいでしょうか?(そもそも偏微分なのだろうか?) 具体例で考えます。 f(x,y) = (x+2y)^2 g(x,y) = x+2y である場合。当然∂f/∂g = 2 gです。このような場合は問題ありませんが、 f(x,y) = x + 3y g(x,y) = x + 2y のような場合はどのように考えたらよいのでしょうか? 全微分の関係を使って考えてみました。 df(x,y) = (∂f/∂x) dx + (∂f/∂y) dy + O(dx,dy) = dx + 3 dy + O(dx,dy) dg(x,y) = (∂g/∂x) dx + (∂g/∂y) dy + O(dx,dy) = dx + 2 dy + O(dx,dy) ∂f/∂g = limit_{dx→0,dy→0} df/dg を考えれば良いのではないかと。 どの方向から極限をとっても極限値が変わらないと仮定して、 つまりdx = dyとして、極限を考えると。 ∂f/∂g = 4/3 とても正しいとは思えないのですが、他にどう考えればよいのかわからず悩んでいます。 そもそも、微分が存在しないと言うことなのでしょうか? 質問は以下の2点です。 (1)この様な場合、どのように考えていけばいいのでしょうか? (2)この様な微分に関して、数学的に何か名前があるのでしょうか?分野名など。 以上 よろしくお願いします。

  • 数Ⅱ 逆関数の導関数について

    次の問題の違いを教えてください。 (1)次の関数の逆関数の導dx/dyを求めよ。  y=x^5 (x>0) (2)次の関数の逆関数を作り、その導関数を求めよ。  y=x^4 (x>0) (1)は、dx/dy=1/(dy/dx)を使って答えが合うのですが、(2)は合いません。 なぜなのかを教えていただきたいです。

  • 逆関数の微分 dy/dx=1/(dx/dy)

    逆関数の微分はdy/dx=1/(dx/dy)と表せるらしいですが混乱してしまいよくわからなくなってしまいました。混乱の原因となった問題を通して教えてください。 (1)(x^3)'=3x^2 dy/dx=1/(dx/dy)を用いて、y=x^3の逆関数y=f(x)の導関数を求めよ (2)rが有理数の時、(x^r)'=rx^r-1を証明せよ。 (1)例えばy=h(x)逆関数というのはこれをxについて解き、yとxを入れ替えて求めますよね。(1)の場合y=f(x)はx=y^3⇔y=x^(1/3)ですので、これを微分してy'=とすれば答えは求められるようです。でも、dy/dx=1/(dx/dy)を使う場合がわかりません。 df(x)/dx=1/(dx/dy)=1/3y^2=3^(-2/3)と書いてあります。 (2)はpが自然数のときy=x^(1/p)とするとx=y^pなので、dy/dx=1/(dx/dy)=1/py^(p-1)・・・・=1/px^(1/p-1)と回答が始まっています。 (1)(2)では逆関数の使い方がそれぞれ異なる気がします。簡潔にいうと「dy/dx=1/(dx/dy)の(dx/dy)の部分に来るものがわかりません。」(1)では逆関数(xについて解いてそれをさらにxとyを取り替えたもの)がその部分に来ているのに(2)ではただ単にxについて解いたものがきていますよね(xとyを取り替えるといる作業がない)。 まったくわからないので教えてください。ほんとによろしくお願いします!!

  • 導関数の求め方

    y=log√(x2+1) 2は二乗の意 この式はどうやって解けばいいのでしょうか? 合成関数の微分で、 (x2+1)=uとして、 y=log√u=logu1/2 dy/dx=du/dx×dy/du dy/dx=2x×1/u1/2 dy/dx=2x/√(x2+1) としました。 しかし、 y=logu1/2 y'=log1/u1/2 にはできないような…。 どうしたらよいのでしょう? わかる方お願いします。