グラフの性質と問題について

このQ&Aのポイント
  • グラフは点と辺からなる図形であり、立方体を一般化したものと考えられます。
  • グラフの上での最小距離を求める問題や平面グラフの性質について考察します。
  • n-cubeの直径と厚さについて、それぞれの式を求めます。
回答を見る
  • ベストアンサー

グラフの性質の問題について

以下の問題、よろしくお願いします。 点の集合と点同士とを結ぶ辺の集合とからなる図形をグラフと呼びます。以下では立方体の頂点と辺からなるグラフを一般化して出来るグラフの性質を考察します。正方形は2次元の立方体なので2-cubeと呼ばれます。立方体は3-cubeです。数学では次元の低い方にも一般化を行います。 2点と2点を結ぶ直線からなるグラフは1-cubeです。n-cubeはn次元ユークリッド空間の超立方体の頂点と辺とからなるグラフです。nーcubeに関して以下の問に答えなさい。 問1 全ての辺の長さを1とします。ある点を1度だけ通過して点と点をつなぐ辺を辿り、異なる2点を結ぶ経路をパスと呼びます。あるグラフの上で、任意の2点x,yを結ぶパスp(x,y)の中でその長さ[p(x,y)] の最小値[p(x,y)]を点x,yの距離と呼びます。グラフ上で[p(x,y)]の最大値のグラフを直径と呼びます。n-cubeの直径をnの式で表しなさい。 問2 点の位置や辺の長さを自在に変えて曲線も許すとき、辺が交わらないように平面に作図可能なグラフを平面グラフと呼びます。2-cube、3-cubeは平面グラフですが、4-cubeはそうではありません。平面に描けないグラフを平面に描ける幾つかの部分に分解することができます。このとき、分解の最小数をグラフの厚さと呼びます。n-cubeの厚さをnの式で表しなさい。

質問者が選んだベストアンサー

  • ベストアンサー
  • alice_44
  • ベストアンサー率44% (2109/4759)
回答No.1

問一 1-cube の直径は 1。 2-cube の直径は 2。 3-cube の直径は 3。 問二 1-cube の厚さは 1。 2-cube の厚さは 1。 3-cube の厚さは 2。 いづれも、図を書いて勘定すれば解る。 n≧4 の n-cube については、ただ「一般化した」 というだけで、どう一般化したのか書いていない から、どのように定義したいのかが判らない。

cafesweets
質問者

お礼

ありがとうございました。参考にします。

関連するQ&A

  • 高校入試用の数学の問題です。

    図は一辺が12の立方体である。AP=3、BQ=7とする。 3点D,P, Qを通る平面で、この立方体を切断する。この平面と辺CGとの交点をRとする。 切断してできる立方体のうち、頂点Bを含む方の立体の体積は□である。 (一つ前の問題でCRの長さは4となりました)

  • 立体の切断っぽい問題

    一辺1の立方体ABCD-EFGHがある。辺BFの中点をX,辺GHをGY:YH=1:2に分ける点をY,辺ADをAZ:ZD=2:3に分ける点をZとする。3点X,Y,Zを通る平面をPとし、平面Pと辺DHの交点をWとするとき、DWの長さを求めなさい。 切り口を延長して平行四辺形をつくって解いてみたら、簡単な一次方程式を解いて答えが6/13になったのですが合ってるでしょうか?それともそもそもこの問題自体がおかしいのでしょうか?

  • 行列と数列の関係式に関する問題(立教)

    これも今年の立教大学の問題です。特に(iii)以降、よろしくお願いします。   l 7 18 | A= | -3 -8 | とおく.Aに対して        | x[1] |  | x[n+1] |   | x[n] |        | y[1] |, | x[n+1] | = A| y[n] | により座標平面上の点P[n](x[n],y[n])(n=1,2,…)を定める. このとき, 次の問(i)~ (iv)に答えよ. (i) P[2], P[3] の座標を求めよ. (ii) すべての自然数 n について, P[n]が座標平面上のあるひとつの直線 l 上にあるこ  とを示せ また, 直線 l の方程式を求めよ. (iii) x[n+1] を x[n] の式で表せ. (iv) x[n],y[n] を n の式で表せ

  • 3次元凸多面体

    3次元凸多面体 3次元凸多面体の頂点と辺をグラフとみなしたとき、これが平面的であることを示せ。 また、3次元凸多面体は必ず三角形、四角形あるいは五角形の面を持つことを示せ。 前半は証明の糸口さえ掴めませんでした。ただ、イメージとしては、例えば立方体はある一面から見ると下図のように平面グラフに出来ますよね? これを一般的な3次元凸多面体について、言葉として証明することができません。 後半では、正多面体については証明出来たつもりです。以下、その証明です。 [証明] (前半が証明済みと仮定して)3次元凸多面体の頂点と辺をグラフとみなし、これの平面グラフGを考える。 Gの頂点数をn、辺数をe、面数をf、各頂点の次数をd、各面がk本の辺を境界に持っているとする。 k=3または4または5であることを示せばよい。 次数の総和=辺数*2 ⇔nd=2e …(1) また、 kf=2e …(2) オイラーの公式より、 2=n-e+f =2e/d - e +2e/k (∵(1)(2)) ⇔1/d + 1/k = 1/2 + 1/m …(3) 式(3)より、明らかにmin(d,k)=3である。 d=3のとき、1/k - 1/6 = 1/m >0よりk=3,4,5 このように証明しましたが、一般の場合にはどうしたらいいでしょうか。どなたか教えてください。

  • 2次関数の問題をどなたか解いてください(ノ_・。)

    1.次の各問いに答えよ。 (1) 2次関数f(x)=x^2-9x+8のグラフの頂点を求めよ。 (2) nを整数とするとき、f(n)=n^2-9n+8の最小値、およびそのときのnの値を求めよ。 2.次の各問いに答えよ。 (1) 放物線y=1/2x(10-x)のグラフを描け。 (簡単にどんなかで構いませんのでお願いします。) (2) 放物線y=1/2x(10-x)とy=(x-5)^2+aが異なる2つの交点をもち、交点のx座標α、βが0<α<β<10をみたすようなaの範囲を求めよ。 よろしくお願いします(ノ_・。)

  • 数Iの問題の解き方と答えを教えてください。

    (1)2次関数y=x^2+2x+k(kは定数)のグラフは点(1,5)を通っている。このとき、k=(ア)であり、このグラフをx軸方向に1だけ平行移動したグラフを表す2次関数はy=(イ)である。 (2)2つの立方体P,Qの表面積をそれぞれS1,S2とすると、S1:S2=4:1を満たしている。このとき、Qの1辺の長さを1とすると、Pの1辺の長さは(ウ)であり、Pの体積を8とすると、Qの体積は(エ)である。

  • 軌跡と領域の問題教えてください。

    軌跡と領域に関する数2の問題です。教えてください。 (1)2つの不等式 x^2+y^2≦4、x+√3y-2≧0を同時に満足する領域の面積を求めよ。 (2)平面上の2点A(2,1)、B(-4,-2)に対してAP:BP=1:2を満 たす点Pの軌跡を求めよ。 (3)2次関数y=x^2+(2k-10)x-4k+16(k≧0)のグラフについて次の問に答えよ。 1.頂点の座標をkを用いて表せ。 2.kが変化するとき、頂点の軌跡を求めよ。 問題集に解説がついていないので、解くために使った知識などもよければ詳しく教えてください…。お願いします。

  • n角形の重心を求めるアルゴリズム

    平面2次元のn角形の頂点のデータがあります。n点の座標ですから(x,y)がn個並んでいます。そのような図形の図心(重心)の座標を計算するアルゴリズムがないでしょうか。最終的にはプログラムとして離散的な処理をするため、1%ぐらいの誤差は許容範囲です。n角形と言ってもせいぜいn=3,4,5,6程度です。 欲を言うと、3次元も考えており、平面に含まれることが分かっているn個の点(3次元空間内)を平面の2次元空間に変換して重心を求め、それを3次元空間に引き戻せば3次元での重心となります。そのためにも2次元での重心の座標を求めるアルゴリズムが必要なのです。 よろしくお願いします。

  • グラフ理論について

    全然分からなくて困っています。誰か助けてください。 1.グラフKn,Kn ̄、Km,n,Cn,Tn〔Tnは位数nの木〕の染色数をそれぞれ求めよ。 2.グラフKn,Km,n,Cn,Tnの辺染色数をそれぞれ求めよ。 3.オイラーの多面体公式を証明せよ。 4.以下の問題を証明せよ。 〔1〕頂点数が3以上の平面グラフGが極大平面グラフであるための必要十分条件は、Gのすべての領域が三角形であることである。 〔2〕4頂点以上の極大平面グラフGにおいて、           △〔G〕   不等式 Σ 〔6-i〕Ni =12 〔Ni = {次数がiの頂点の数}〕が成立する。 〔3〕4頂点以上の平面的グラフには、次数5以下の頂点が存在する。 〔4〕K5,K3,3は非平面的グラフである。 〔5〕平面的グラフは5-彩色可能である。

  • 空間図形の問題です。教えて下さい。

    問.1辺の長さが4cmの立方体がある。次の問いに答えよ。 (1)対角線BHの長さを求めよ。 (2)正方形BFCGの対角線GB上を、点GからBまで動く点をPとする。GPの長さをx[cm]、四面体PEFHの体積をy[cm^3]とするとき、 1)xの変域を求めよ。 2)yをxの式で表せ。 3)点PがGBの中点であるとき、△PHEを底面とする四面体PEFHの高さを求めよ。