• ベストアンサー

これの和訳をお願いします。

It should be noticed that b~ means the distance of the gyrocenter of a particle from the circular orbit of the planet and, hence, is regarded as an impact parameter on the analogy of the scattering problem in a free space. よろしくお願いします。

  • 英語
  • 回答数2
  • ありがとう数2

質問者が選んだベストアンサー

  • ベストアンサー
  • ddeana
  • ベストアンサー率74% (2976/4019)
回答No.2

b~ は惑星の円軌道から粒子のジャイロセンターまでの距離を意味するということに留意すべきであり、よって、 b~は自由空間における拡散問題から類推して(※1)、ひとつの衝撃パラメーターと見なされる。 ※1:「類推」特定の事物に基づく情報を、他の特定の事物へ、それらの間の何らかの類似に基づいて適用する認知過程のことを指します。

stargazer1231
質問者

お礼

わかりやすく用語の解説もしていただいてありがとうございます。

その他の回答 (1)

  • Gracies
  • ベストアンサー率45% (150/332)
回答No.1

(1)訳としては、  このことについては、b~という時には、地球の周りを回っている(特定の)通信衛星と、(地上にある)各ジャイロセンターとの距離を意味するということに、気付づくべきです。  そして、これは、それゆえ、(通信経路という)自由空間が散在する問題に於けるアナロジーを考える上で、(影響を及ぼすプログラムに動作条件を与える情報としての)パラメータとしてみなされています。    ということではないでしょうか。 (2)次に 専門用語の解説を付記します。  イ 自由空間:     無線通信では、電波の伝送路として、移動体通信や非常用固定通信に用いられる空間のことで、    平たくいうと、電波の通り道のこと  ロ アナロジー:     特定の事物に基づく情報を、他の特定の事物へ、それらの間の何らかの類似に基づいて適用する    認知過程のこと  ハ パラメーター:     プログラムの動作条件を与えるための情報のこと。     プログラムでは、多くのユーザーの異なる好みに応えるために、一つの機能でも動作を変えられ    るように作成されることが多い。それらは、ユーザーが設定値やボタンなどで選択することがで    きるようになっており、動作の変更は、プログラム内部ではパラメータによって制御されてい     る。また、パラメータは、プログラミングでは引数と呼ばれることもあり、プログラムの部品を    実行する場合に、引数によって部品の動作についての指示を起動元が行う。このパラメーターに    より、具体的な動作可能なプログラムを作成している。     http://www.sophia-it.com/content/%E3%83%91%E3%83%A9%E3%83%A1%E3%83%BC%E3%82%BF%E3%83%BC (3)応用解釈:ご参考に    例えば、世界中にいろいろな通信衛星がありますが、例えば、通信障害が発生したというような場合、先ずは、特定の(保有する、通信する周回軌道している)衛星と、それに向けて発信するそれぞれの通信衛星内の距離に気が付くべきです。だから、その上で、通信経路で起きた障害については、どのような特徴でそれが作られているのかという問題解決を図る上では、それを制御する処理の仕方がどうなっているのかを考えていく  ということではないでしょうか。

stargazer1231
質問者

お礼

詳しく説明していただいてありがとうございます。 こちらとしても大変助かっています。

関連するQ&A

  • この文章の和訳をお願いします。

      We have two kinds of the final stage of the particle orbit: One is the scattering case and another is the collisional case. For the scattering case, after the passage near the planet a particle orbit settles again to the Keplerian at the region far from the planet. The final orbital elements (b_f~, e_f~, ε_f, δ_f), of course, are different from the initial owing to the gravitational interaction with the planet. On the other hand, we regard the case as the collision of the particle with the planet when the distance between the particle and the center of the planet becomes smaller than the planetary radius, r_p, which is given in the units adopted here by       r_p=R_p/R=(3M/4πρ)^(1/3)/R,        =4.57×(10^-3)h/(R/1AU),         (2・12) where R_p and R are the radius of the planet in ordinary units and the distance between the planet and the Sun, respectively. どうかよろしくお願いします。

  • この文章の和訳をお願いします。

                     2. Adopted assumptions and basic equations We consider two planetesimals revolving around the proto-Sun (being called the Sun). Here we assume that the mass of the one of these, which hereafter is called a protoplanet or simply a planet, is much larger than that of the other (being called a particle). We also assume that the planet moves circularly around the Sun without the influence of gravity of the particle. Furthermore, each orbit of the particle is limited in the ecliptic plane of the planetary orbit. Under these assumptions, the particle motion is simply given by a solution to the plane circular RTB problem. よろしくお願いします。

  • これの和訳を教えてください。

    In this and subsequent papers we will study worken Keplerian particles in the framework of the plane circular Restricted Three-Body problem ( the plane circular RTB problem). The aim of the present paper is to represent, for example, the collisional rate by means of the numerical solutions to the plane circular RTB problem for special cases and to compare the result with that deduced from the formula in a free space.

  • この文章の和訳をお願いします。

    These come from the fact that for small values of b~ and μ, as considered here, Eqs.(2・1) and (2.2) are approximately symmetric with respect to the y-axis. Now, we will see features of collision of a particle with the planet. It should be noticed that, as mentioned in §2, the radius of the planet changes with the distance between the Sun and the planet is assigned. Here we will concentrate on the collision near the orbit of the present Earth. よろしくお願いします。

  • この文章の和訳を教えてください。

    At first sight, from these figures, a symmetric pattern with respect to b_i~=0 holds approximately and a large scattering occurs in the region 1.5≦|b_i~|≦6. This is because a particle of which |b_i~| lies between 1.5 and 6 enters the Hill sphere and, hence, is scattered heavily. When |b_i~| is less than about 1.0, the feature of the scattering takes a new aspect. The gyrocenter of a particle comes slowly close to the planet whereas the particle rotates rapidly around the gyrocenter. When the distance between the planet and the gyrocenter is several times as short as the Hill radius, the gyrocenter of the particle gradually turns back to the opposite side of the y-axis, as if it were reflected by a mirror. The feature of the scattering is the same as that for the case e_i~=0. For the final impact parameter, b_f~, and the eccentricity, e_f~, we have again the relations b_f~=-b_i~ and e_f~=e_i~. (3・10) よろしくお願いします。

  • これの和訳を教えてください。

    The gyrocenter of a particle comes slowly close to the planet whereas the particle rotates rapidly around the gyrocenter. When the distance between the planet and the gyrocenter is several times as short as the Hill radius, the gyrocenter of the particle gradually turns back to the opposite side of the y-axis, as if it were reflected by a mirror. The feature of the scattering is the same as that for the case e=0. For the final impact parameter, bf, and the eccentricity, ef, we have again the relations bf=-bi and ef=ei. (3・10) お手数ですが、和訳をよろしくお願いいたします。

  • この和訳を教えてください。

    The gyrocenter of a particle comes slowly close to the planet whereas the particle rotates rapidly around the gyrocenter. When the distance between the planet and the gyrocenter is several times as short as the Hill radius, the gyrocenter of the particle gradually turns back to the opposite side of the y-axis, as if it were reflected by a mirror. The feature of the scattering is the same as that for the case e=0. For the final impact parameter, bf, and the eccentricity, ef, we have again the relations bf=-bi and ef=ei. (3・10) 長い文章ですが、和訳をよろしくお願いいたします。

  • この文章の和訳をお願いします。

       In this and subsequent papers we will study extensively the collisional rate and the scattering rate of the two-body encounters between Keplerian particles in the framework of the plane circular Restricted Three-Body problem ( the plane circular RTB problem). よろしくお願いします。

  • この文章の和訳をお願いします。

    It should be noticed that when δ*=0 the perigee of a purely Keplerian orbit lies on the x-axis. For the orbital calculations, b_i~ is taken in the range between -10 to 10 and δ* is varied from -π to π. When |b_i~| is about 10, the perigee distance from the planet is larger than several times the Hill radius. Thus, the particle is hardly scattered and keeps almost the same orbital elements as the initial during the encounter. When |b_i~| is as small as 6, however, a particle begins to interact with the planet appreciably only in the vicinity of δ*=0 and the orbital elements are slightly changed. よろしくお願いします。

  • これの和訳お願いします。

    However, from a number of orbital calculations, the following two points are made clear. At first, it becomes easy to understand qualitatively the reason why there exist many fine spikes in the scattering pattern of bf. An example of a particle orbit is shown in Fig. 5(a) for the case bi=1.91894, which belongs to the region of a discontinuous band. Here, after the particle revolves around the planet many times, it gets out of the Hill sphere through the gate of the L1-point, and has a negative bf in the final stage. But by just a little bit of difference of the initial value of bi (for example, bi=1.91898), then a particle happens to escape from the Hill sphere through the gate of the L2-point.