• ベストアンサー

熱力学(数学)の証明の問題です

Z=(X,Y) X,Y,Zは状態量 dZ=PdX+QdYとすると (∂P/∂Y)x=(∂Q/∂X)y 完全微分 X,Y,Zが状態量なら上の完全微分が成り立つことを数学的に証明せよ。 どうやったらいいか教えてください。お願いします

質問者が選んだベストアンサー

  • ベストアンサー
noname#221368
noname#221368
回答No.1

 Z=(X,Y)ではなく、Z=f(X,Y)(←ZはXとYの関数)でしょうか?。以下、そうだとしてですが・・・。  そうなると、数学的な証明というより、状態量の定義をちゃんと理解してるかどうかを、問われてる事になります。  Z=f(X,Y)において、Zの値が(X,Y)平面上での「(X,Y)の位置だけ」で決まる時、Zを(X,Y)によって決まる「状態量」と言います。Z=f(X,Y)なんだから、そんなの当たり前じゃないか、と思うかもしれませんが、一般にはそうではありません。  そのために講義では、点(X,Y)がある経路Cに沿って進んだら、Zの変化はこうなるみたいな例が、沢山出て来ませんでしたか?。経路Cが閉じた例(円のように)は、特に注目されませんでしたか?。  閉じた経路を一周して出発点に(X,Y)が帰って来た時、最初のZ=f(X,Y)と後のZ=f(X,Y)が違うような例は、ありませんでしたか?。そんような場合、Z=f(X,Y)の値は本当は、「(X,Y)の位置だけ」では決まらず、経路依存になります。本当は、Z=f(X,Y,経路)な訳です。このような場合には、(X,Y,Z)は非状態量です。  しかしf(X,Y)の式を見た瞬間に、それを判断し難い場合もあるので、質問にあるような状態量になる条件を導きます。(X,Y,Z)が状態量の時、「状態(X,Y)においてZは、Z=f(X,Y)という値を取る」などと言います。  またZ=f(X,Y)や、それと等価なS(X,Y,Z)=0の形を、「状態方程式」と言います。代表はもちろん、理想気体の状態方程式です。Z:温度,X:圧力,Y:体積みたいな感じです。  という訳で(X,Y,Z)が状態量なら、Z=f(X,Y)として「普通の関数」を考えれば良い事になります。「普通の関数 Z=f(X,Y)」では、全微分の公式から、   dZ=(∂f/∂X)dX+(∂f/∂Y)dY なので、   P=∂f/∂X , Q=∂f/∂Y です。偏微分の順序交換則より、   ∂P/∂Y=∂^2f/(∂X∂Y)=∂^2f/(∂Y∂X)=∂Q/∂X   (1) になります。  逆に条件(1)から、f(X,Y)が普通の関数である事(←(X,Y)に関するポテンシャルになると言います)を、数学的に導けますが、まぁ~そこは、暇な時にでも(^^)。  またZ=f(X,Y)がポテンシャル(普通の関数)なら、Y=g(Z,X)もX=h(Y,Z)も、数学的に不運なケースを除けば大抵ポテンシャルになります。なので(X,Y,Z)は状態量、という訳です。これも暇な時に、ちょっと考えてみて下さいね。でも、理想気体の状態方程式でも思い浮かべれば、明らかですよね(^^)。

全文を見る
すると、全ての回答が全文表示されます。

その他の回答 (1)

  • alice_44
  • ベストアンサー率44% (2109/4759)
回答No.2

A No.1 の適切で丁寧な回答を見れば判るように、 これは、数学ではなく物理の質問です。 しかも、用語の定義を知っているかどうかだけの。

全文を見る
すると、全ての回答が全文表示されます。

関連するQ&A

  • "平面"におけるグリーンの定理の証明

    "平面"におけるグリーンの定理 平面領域Dとその境界∂DにてP(x,y),Q(x,y),∂P/∂y,∂Q/∂xが連続ならば ∫[∂D](Pdx+Qdy)=∬[D](∂Q/∂xー∂P/∂y)dxdyが成り立つ。 以上を、ガウスの発散定理を用いて証明することにトライしてみましたが旨くゆきません。 証明 ∬[D]divQ dD=∬[D](∂Q/∂x+∂Q/∂y)dxdy=∫[∂D](Qdy+Qdx)--(1) ∬[D]divP dD=∬[D](∂P/∂x+∂P/∂y)dxdy=∫[∂D](Pdy+Pdx)--(2) (1)第2辺-(2)第2辺=∬[D]{∂(Q-P)/∂x+∂(Q-P)/∂y}dxdy=∬[D](∂Q/∂xー∂P/∂y)dxdy=命題の右辺--(3) (1)第3辺-(2)第3辺=∫[∂D]{(Q-P)dy+(Q-P)dx}-----(4) (4)が命題の左辺に等しくなるにはどうすればよいのでしょうか。。

  • 全微分に関して教えてください。

    全微分に関して教えてください。 教科書には、 まず、1階微分方程式:dy/dx=-p(x,y)/q(x,y)が定義され、 p(x,y)dx+q(x,y)dy=0・・・(1) と変形した形が書かれています。 そして、完全形の条件が書かれています。 そこで、(1)が完全形であるための必要十分条件は、 ∂p(x,y)/∂y=∂q(x,y)/∂xと書かれ、 証明が始まるのですが、 [必要条件] pdx+qdyが関数uの全微分であるならば、du=∂u/∂x dx+∂u/∂y dy=pdx+qdy よって、p=∂u/∂x、q=∂u/∂yであり、 ∂p/∂y=∂^2u/∂y∂x=∂^2u∂x∂y=∂q/∂x [十分条件] ∂p/∂y=∂q/∂xとしたとき、 F(x,y)=∫p(x,y)dx・・・(2)とおくと、 p(x,y)=∂F/∂x, ∂q/∂x=∂p/∂y=∂^2F/∂x∂y・・・(3) であるから、∂/∂x(q-∂F/∂y)=0・・・(4) すなわち、q-∂F/∂y・・・(5) はyだけの関数である。 q-∂F/∂y=G(y)・・・(6) よって、 u(x,y)≡∫q(x,y)dy=F(x,y)+∫G(y)dx・・・(7) とおけば、 ∂u/∂y=q(x,y)、∂u/∂x=∂F/∂x=p(x,y) であるから、 du=∂u/∂x dx+∂u/∂y dy=p(x,y)dx+q(x,y)dy・・・(8) となり、証明終了となっております。 必要条件に関しては分かるのですが、 十分条件に関しての証明がよく分かりません。 I、(2)とおく理由 II、(4)となる理由 III、(5)がyだけの関数という意味 IV、その結果、(7)となった過程 上記のI~IVに関して教えていただけませんでしょうか 長々と申し訳ありません。 どうしても理解したいので、 どなたか、教えていただけませんか。 宜しくお願いいたします。 ※数式に関しては、何度か確認したのですが、 間違っていたらご指摘ください。

  • 全微分方程式の変数分離

    斉次全微分方程式 P(x,y,z)dx+Q(x,y,z)dy+R(x,y,z)dz=0 をzが変数分離された式 P'(u,v)du+Q'(u,v)dv+dz/z=0 となることを示したいのですが、 まずx=uz,y=vzと置くと dx/dz=z*du/dz+u dy/dz=z*dv/dz+v となりますよね。 これを代入して色々やっているのですが、 どうやっても目的の式にもっていくことが出来ません…。 どなたかやりかただけでもお願いします。

  • ベッセルの方程式の問題の解き方が分かりません

     次のベッセルの方程式の問題の解き方が分かりません。  数学に詳しい方、よろしければご教示願えないでしょうか。 問題は、  ベッセルの方程式に帰着できるさまざまな方程式がある。示されている置換を 使って、次の微分方程式の一般解を求めよ。 4*x^2*y" + 4*x*y' + (x - ν^2)*y = 0 (√x = z)  このように解いてみました。  ベッセルの微分方程式は、 x^2*y" + x*y' + (x^2 - ν^2)*y = 0 で、  一般解は、 y(x) = A*Jν(x) + B*Yν(x) ここで、A と Bは任意定数、Jν(x)は第1種ベッセル関数、Yν(x)は第2種ベッセル 関数。 √x = z より、 dz/dx = 1 / (2*√x) y'とy"は、 y' = dy/dx = (dy/dz)*(dz/dx) = (dy/dz)/(2*√x) y" = d^2y/dx^2 = (d/dx)*(dy/dx) = (d/dz)/(2*√x)*(dy/dz)/(2*√x) = (d^2y/dz^2)/(4*x) ゆえに、 4*x^2*y" + 4*x*y' + (x - ν^2)*y = 4*x^2*(d^2y/dz^2)/(4*x) + 4*x*(dy/dz)/(2*√x) + (x - ν^2)*y = x*(d^2y/dz^2) + 2*√x*(dy/dz) + (x - ν^2)*y = z^2*(d^2y/dz^2) + 2*z*(dy/dz) + (z^2 - ν^2)*y = 0 となって、第 2項目が z*(dy/dz) にならず、2*z*(dy/dz) になってしまいます。  本の回答をみると、 A*Jν(√x) + B*Yν(√x) となっているので、問題の微分方程式を、 z^2*(d^2y/dz^2) + z*(dy/dz) + (z^2 - ν^2)*y = 0 に変形したのだと思いますが、どのようにすれば良いのでしょうか ?  同様に下記の問題も、 x^2*y" + x*y' + 4*(x^4 - ν^2)*y = 0 (x^2 = z) 同じ解き方をしたため、 z^2*(d^2y/dz^2) + z*(dy/dz) + (z^2 - ν^2)*y = 0 に変形できませんでした。  なにとぞよろしくお願いします。

  • 数学の問題です。

    数学です。 よろしくお願いします。 座標平面上で原点Oから出る半直線の上に2点P,QがありOP•OQ=2を満たしている。 (1)点P,Qの座標をそれぞれ(x,y),(X,Y)とするとき、x,yをX,Yで表せ。 (2) 点Pが直線x-3y+2=0上を動くとき、点Qの軌跡を求めよ。

  • 数学的帰納法での証明

    確率p_{i}について、 p_{i}=(1/i !)*p^{(i)}(0) を数学的帰納法で証明してください。p^{(i)}pのi回微分です。 また、p_{i}=P(X=i) と p(z)=Σ(i → ∞)p_{i}z^{i}が与えられてまいます。

  • 数学A 命題の証明

    x,y,zは0でない実数とする。A=x+y+z B=xy+yz+zx C=xyzとする。 (P) A=0ならば、B<0である。 (Q) A,B,Cがすべて正ならば、x、y、zはすべて正である。 (R) x、y、zのうち1つだけが正ならば、A<0 または B≦0である。 (1)(P)を証明せよ。 (2)(Q)の成立を仮定して、(R)を証明せよ。 (3)(Q)を証明せよ。 (1)はわかったので、2番以降の解説をお願いします。 ちなみに2番は対偶で考えるように言われました。 3番は xyzのうち(1つだけが正、2つが負)ではないことを示せばよいそうです ご回答お願いします。

  • 3重積分に関する問題

     R^3上の広義積分   (1)∫∫∫[R^3] e^(-Q(x,y,z)) dxdydz   (2)∫∫∫[R^3] (x^2 + y^2 +z^2)e^(-Q(x,y,z)) dxdydz ただし、Q(x,y,z)=(x y z) A t(x y z)、Aは、上から、    A=(2 -1 1)(|-1 2 -1)(|1 -1 2) で与えられているとします。上記の二つの積分を求めたいのですが、(1)に関しては次のように考えました。 (1)まず、Q(x,y,z)の標準化を考え、直行行列Pを用いてAを対角化します。そうすると、Pは(ただし、Aの固有値は4、1)、上から(最初の(1/√6)は係数)、  P= (1/√6)(√2 -√3  1)(-√2   0 2)(√2 √3 1) となり、U=tPAPと置くと、A=PUtPとなるので、   Q(x,y,z)=t(tP t(x y z)) U tPt(x y z)。 ここで、(x' y' z')=tPt(x y z)と置くと、  Q(x,y,z)=t(tP t(x y z)) U tPt(x y z)=(x' y' z')Ut(x' y' z')=F(x',y',z') と変換でき、またヤコビアンJ(x',y',z')=-2/3より、  ∫∫∫[R^3] e^(-Q(x,y,z)) dxdydz =(2/3))∫∫∫[R^3] e^(-F(x',y',z')) dx'dy'dz' となります。よって、  (2/3))∫∫∫[R^3] e^(-F(x',y',z')) dx'dy'dz' =(2/3)∫[-∞,∞] e^(-4x'^2)dx'∫[-∞,∞] e^(-y'^2)dy'∫[-∞,∞] e^(-z'^2)dz' ここで、x'=(1/2)sと置くと、上式は、 =(1/3)∫[-∞,∞] e^(-s^2)ds∫[-∞,∞] e^(-y'^2)dy'∫[-∞,∞] e^(-z'^2)dz' =(1/3)(∫[-∞,∞] e^(-s^2)ds)^3 ここで、∫[-∞,∞] e^(-x^2)dx=√π より、 =(1/3)π√π となりましたが、これで正しいでしょうか?また、(2)に関しては、  ∫∫∫[R^3] (x^2 + y^2 +z^2)e^(-Q(x,y,z)) dxdydz =∫∫∫[R^3] (x'^2 + y'^2 +z'^2)e^(-F(x',y',z')) dx'dy'dz' としたところで止まってしまいました。どうやって考えればよいのでしょうか? 以上です。どなたかお力添えしていただけないでしょうか? よろしくお願いします。長文失礼しました。

  • 至急!数学の基本問題、助けてください!

    数学のお得意な方ご協力お願いします! 一問目〉 P,Q,Rは正の整数である。P×Q×R=12 P-Q=2 のとき、Rはいくらか? 二問目》 4つの整数 WXYZについて、W+X+Y+Z=30 W=3X Y=4Z が成り立つ。 このときのWの値を求めよ。 既卒者数人がかりでも解けなかったので、ぜひぜひ数学の得意な方に教えていただきたいです。

  • 数学の証明なのですが・・・。

    集合の証明に関してなのですが、証明ができません・・・。 どなたか時間に余裕のある方、手間をおかけしますが証明をお願いします。 2問あり、どちらか1問でも構いません。 1つ目-------------------------------------------------------- A∪B={ x| P(x) ∨ Q(x) } A∩B={ x| P(x) ∧ Q(x) } PやQを人や組織など、具体的な例で示してくださるととても助かります。 2つ目-------------------------------------------------------- 『Aを空集合でない自然数の集合とする。このときAは最小の数をもつ』 というのを数学的帰納法で証明する。 ************************************************************** 以上2つです。自分でも解いてみたのですが、どうも数学(特に証明)が苦手で・・・。