• 締切済み

ザリスキー位相のコンパクト

ザリスキー位相のコンパクトについてどなたか教えてください。 位相空間の講義で出された問題ですが、何をどうしたら良いかわかりません。 どなたか、証明を解説して頂けると助かります。 問題 ザリスキー位相の任意の部分空間はコンパクトであることを示せ。 ザリスキー位相:O={A⊂R|A^cは有限集合}∪{Φ} よろしくお願いします。

みんなの回答

  • jmh
  • ベストアンサー率23% (71/304)
回答No.4

「ザリスキーはコンパクト」を考えてみました。 1.ザリスキだから、1つの空でない開集合だけで、高々有限個を除く全体を覆える。 2.溢れた有限個は、それぞれを他の有限個の開集合で覆う。 3.最初のと併せて有限個の開集合で必ず全部覆える。 残りは、例えば「ザリスキの部分空間はザリスキか?」だと思います。

noname#199771
noname#199771
回答No.3

たびたびすみません。訂正です。 U(λ_0)≠∅なるλ_0をとります。 ↓ A(λ_0)≠∅なるλ_0をとります。

mspirit
質問者

お礼

berokandaさん、迅速なご回答ありがとうございます。 これを参考にまた考えてみます。本当にありがとうございました。

noname#199771
noname#199771
回答No.2

#1ですがひどい間違いがあったので差し替えお願いします。 ---------------------------------------------------- Rの任意の部分集合Xを取ります。 Xの任意の開被覆{A(λ)}をとります。 X⊂∪{A(λ)}=:Aと置きます。 U(λ_0)≠∅なるλ_0をとります。 Oの定義から、u_1,...,u_n∈Rが存在して (A(λ_0)^c)\(A^c)={u_1,...,u_n} ※「M^c」はMの補集合、「M\N」はM∩(N^c)を表すとします。 このとき、λ(1)が存在して u_1∈A(λ_1)かつ[{(A(λ_0))∪(A(λ_1))}^c]\(A^c)⊂{u_2,...,u_n} 以下同様にして u_2∈A(λ_2)かつ[{(A(λ_0))∪(A(λ_1))∪(A(λ_2))^c]}\(A^c)⊂{u_3,...,u_n} u_3∈A(λ_3)かつ{[(A(λ_0))∪(A(λ_1))∪(A(λ_2))∪(A(λ_3))}^c]\(A^c)⊂{u_4,...,u_n} ・・・ (以下省略)

noname#199771
noname#199771
回答No.1

定石通りです。 Rの任意の部分集合Xを取ります。 Xの任意の開被覆{U(λ)}をとります。 X⊂∪{U(λ)}=:Uと置きます。 U(λ_0)≠∅なるλ_0をとります。 Oの定義から、u_1,...,u_n∈Rが存在して (A(λ_0)^c)\(U^c)={u_1,...,u_n} ※「M^c」はMの補集合、「M\N」はM∩(N^c)を表すとします。 このとき、λ(1)が存在して u_1∈A(λ_1)かつ{(A(λ_0))∪(A(λ_1))}\(U^c)⊂{u_2,...,u_n} 以下同様にして u_2∈A(λ_2)かつ{(A(λ_0))∪(A(λ_1))∪(A(λ_2))}\(U^c)⊂{u_3,...,u_n} u_3∈A(λ_3)かつ{(A(λ_0))∪(A(λ_1))∪(A(λ_2))∪(A(λ_3))}\(U^c)⊂{u_4,...,u_n} ・・・ 以下省略しますので残りはご自分でどうぞ。

関連するQ&A

  • ”コンパクト”の定義について。集合、位相

    集合論における、”コンパクト”の定義について質問です。 言い回しの違いがあるにせよ、以下の2種類があるようですが どちらが正しいのでしょうか? (その1) コンパクトであるとは、位相空間Xの任意の開被覆が、必ずXの有限被覆を部分集合として含むことである。 (その2) ある集合Aを、有限個の開集合の和で覆えるときにコンパクトという。 個人的には、(その1)の定義が正しいとおもっています。 ”位相空間”であることが、前提条件でないと 話が進まない気がしています。

  • 集合と位相の問題です。コンパクトについてなんですが良かったら回答お願いしますm(__)m

    コンパクトの定義です。 『位相空間Xの任意の開被覆 {K_α}α∈A の中から 有限個の開集合 K_1、・・・・・、K_m をうまく選んで、 X=K_1∪・・・∪K_m となるとき、Xはコンパクトであるという』 (1)このコンパクトの定義で重要な部分を指摘して下さい。 (2)Rはコンパクトではないことを示して下さい。 よろしくおねがいしますm(__)m

  • 位相数学の添削をしてほしいず

    http://oshiete1.goo.ne.jp/qa2682012.htmlで聞いたものです。 以下の問題について自分なりに解答をまとめてみたので添削してください。小さいことでもいいので悪いところを指摘してほしいです。 ページは松坂和夫の集合・位相入門をまとめたページです。 問1)Xの位相Oとは何か? ただしMλとかM1とかのλや1は添え字です。この問題は 前の質問にあるやつや152ページからまとめたものです。 解答)以下の条件、甲、乙、丙を満たすことである    甲. X∈O および φ∈O    乙. M1∈O、M2∈Oならば M1∩M2∈O    丙. (Mλ)λ∈∧ をOの元からなる任意の集合族(すなわち、      添数集合∧は任意の有限または無限集合で、すべてのλ∈      ∧に対してMλ∈O)とすれば∪Mλ∈O  問2)A∈XのときのAの相対位相となにか? これは188ページをまとめてみました。 解答)iをAからXへの標準的写像とする(つまり、x∈Aならあばi(x)=x)このときに、i:A→Xにより, Xの位相Qから誘導されるAの位相OaをAの相対位相とよぶ 問3)位相空間Xがコンパクトであるとは何か? これは209ページをまとめてみました。 解答)Xの任意の開被覆が必ずXの有限被覆を部分集合として含んでいる   こと 問4)位相空間Xが連結であるとはどういうことか? 解答)Xの閉集合系をMとする。Xの位相をQとするときに、    Q∩M={S、φ}をみたすことである。 この答えであっているのか間違えているのか、違う部分を指摘してほしいです。

  • 位相空間の本で

    読んでいてあまりわからない所が2点ありまして、 1.XにXのすべての部分集合を開集合とする位相を入れると、   Xの部分集合Cがコンパクト ⇔ Cが有限集合 という部分と、 2.Xをコンパクトハウスドルフ空間、Yをハウスドルフ空間とするとき、   写像f:X→Yが全単射連続なら逆像f-1:Y→Xも連続になる という部分に疑問が残りました。 1.については、コンパクト⇒閉集合であることや、Cが有限集合なら有限個の開被覆で覆えるからコンパクトである、ということが使える(?)のではじめの「XにXのすべての部分集合を開集合とする位相を入れる」部分が必要ないのではないかとも思うのですが・・・ 2.については、Xがコンパクトハウスドルフ空間ならその部分集合Cもコンパクトでその写像はやっぱりコンパクトで・・・その逆像もコンパクトで・・・・? どこから連続の議論に持っていけばよいのかが分かりませんでした。 「証明は読者に委ねよう」というお得意の言い回しで飛ばされてしまっていて、なんだか消化不良のままです>< ご返答よろしくお願い致します。

  • 相対位相について教えて下さい!!!!!!!!!

    (X,O)を位相空間、A⊂X、O|AをAの相対位相、X=R,Oを1次元ユークリッド位相、A=[0,1]とする。 部分位相空間(A,O|A)で、Aの部分集合B=(1/2,1]の内部と閉包を求めよ。 という問題なのですが・・・。相対位相がイマイチ分かりません(。。;) BもAの相対位相になるんじゃないんですか・・・? 分かる方お願いしますm(__)m

  • 閉区間[-1,1]がコンパクトである事の証明は?

    こんにちは。 閉区間[-1,1]がコンパクトである事はどうやって証明すればいいのでしょうか? RはT:={(a,b)∈2^R;a,b∈R}を位相として位相空間をなしますよね。 [-1,1]の開被覆の集合{A∈2^T;[-1,1]⊂∪[B∈A]B}:=C ∀A∈Cを採った時、どのように有限個のB1,B2,…,Bn∈Aを選べば [-1,1]⊂∪[i=1..n]Bi と出来るのでしょうか?

  • 集合と位相

    (1)X,Yは位相空間とする。A,BがそれぞれX,Yの開集合であるときA×Bは直積位相X×Yの閉集合であることを示せ。 (2){Xλ}λ∈Λを位相空間の族としてAλ⊂Xλ(λ∈Λ)とする。 この時直積位相空間Πλ∈ΛXλにおいて以下を示せ。 (閉包のバーの書き方がわからないのでclと表記します) (a)cl(Πλ∈ΛAλ)=Πλ∈ΛclAλを示せ。 (b)Λは無限集合であるとき、Int(Πλ∈ΛAλ)≠φであるための必要十分条件は有限個のIntAλ≠φであり、かつその他のλについてはAλ=Xλであることを示せ。 (1)は以下のように考えたのですがわかりません。 Aの補集合、Bの補集合はそれぞれX,Yの開集合となる。 よってA^c×B^cは直積位相X×Yの開集合となる。 また(A×B)^c=(A^c×Y)∪(X×B^c) ここで詰まってしまいました。友人に聞いてみたら、 「生成する」位相という言葉の定義がわかってないと言われました。これはどのような意味なのでしょうか? 例えは直積位相の定義にもありました。 X,Yが位相空間でそれぞれの位相をЦx、Цyとした時に Цx×Цy={O1×O2|O1∈Цx,O2∈Цy}が生成する位相を直積位相という。 また位相を「入れる」ということはどういう意味なのでしょうか? (2)(a)は次のように考えてみましたがどうでしょうか? (⊃) ∀x∈Πλ∈ΛclAλを取る。∃λ∈Λ s.t. x∈clAλであるから xの任意の近傍はAλと交わる。したがってxの近傍はAλよりも大きい集合Π(λ∈Λ)Aλとも交わるので、 xはcl(Π(λ∈Λ) Aλ)の点になる。 (⊂) ∀x∈cl(Π(λ∈Λ) Aλ)を取る。 xの任意の近傍とΠ(λ∈Λ)Aλは交わるから、 あるAλと任意の近傍は交わる。これよりx∈clAλ よってx∈Πλ∈ΛclAλ (b)はわかりませんでした。アドバイスお願いします。

  • 位相

    X を位相空間,Y をコンパクト位相空間とする.このとき, (1) U を直積位相空間X × Y の開集合としたとき, A = { x | {x} ×Y ⊂ U } はX の開集合であることを示せ. これを解くためのヒントをください。 Aに含まれる任意の点 x1のある近傍がAに含まれることをしめすんですね。そのような近傍をどうとればいいんでしょうか。

  • 位相数学について再び質問です

    http://oshiete1.goo.ne.jp/qa2686308.htmlで質問したものです。 また自分なりに考えた解答を添削&教えてください。 問1-1)(X、Ox)(Y,Oy)を位相空間とする     X × Yの直積位相とは何か? これがさっぱりわかりません。 問1-2)XとYがハウスドルフ空間ならば、X × Yもハウスドルフ空間であることを示せ。 これもさっぱりです。たぶん問1-1を使うと思います。 問2)(X、d)を距離空間とする    距離dの定めるXの位相Odの定義とはなにか? これもわかりません、どういう意味でしょうか?位相Odが距離空間の定義を満たすということでしょうか? 問3)Xがコンパクトで、A⊂Xが閉集合ならAもコンパクトであることをしめせ。 Xがコンパクトだから、Xの任意の開被覆が必ずXの有限被覆を部分集合として含んでいる。ここまではいいと思います。たぶんAがコンパクトでないと仮定して矛盾を示すと思います。これ以上がどうしてもわからないです。    

  • 集合と位相

    (問)fを集合Xから位相空間(Y,U)への全射とするとき、つぎを証明せよ。 ※Uは位相 (1)T={f^(-1)(V)|V∈U}のときTはX上の位相である (2)Tはfを(X、T)から(Y,U)への連続写像とするX上の最小の位相である。 (1)の答案 (O1)Uは位相なので、Y、φ∈Uである。fは全射なのでX、φ∈Tである。 (O2)Uは位相なので任意のVの和集合はUの元である。fは全射なので、Tの任意の元Sの和集合はTの元である。 (O3)Uは位相なので有限個の任意のVの共通集合はUの元である。fは全射なので、Tの有限個の任意の元SはTの元である。 (2)はまったくてがつけられません。 どなたか詳しい方教えてください。