• ベストアンサー

複素関数論の問題

f(x)=exp(mx)/{1+exp(nx)} 上記の関数f(x)に対して、実関数の積分 ∫[-∞→∞] f(x) dx を複素積分を用いて解きなさい。ただし、0<m<nである。 上に示した問題(某大学院の過去問)について解けなくて困ってます。 解法をよろしくお願いいたします。

質問者が選んだベストアンサー

  • ベストアンサー
  • alice_44
  • ベストアンサー率44% (2109/4759)
回答No.2

留数定理を ∫[-∞,∞] に応用する計算として、型どおりの例です。 概ね A No.1 のようにすればよいのですが、その際、 [-R,R] での積分が R→∞ の極限で収束することを示しただけでは、 [-∞,∞] での積分が収束することを示したことになりません。 (主値の収束だけを示したことになる。) 実区間 [a,b] と、b から a へ上半平面を通って行く経路 C を考え、 閉路積分 ∫[a…b]f(x)dx + ∫[C]f(z)dz を計算しましょう。 C 上での |z| の最小値が →∞ となる極限を考えれば、 同じ目的を、正しく果たしたことになります。 結果は、同じく 与式 = lim 閉路積分 = (2πi) Σ[k=0→∞] Res[f,iπ(2k+1)/n] です。(値の算出は、御自分で。) ∫[C]f(z)dz を評価するには、 C 上で |z| ≧ t と置いて、|f(z)| ≦ g(t) となる g を見つけ、 ∫[C]f(z)dz ≦ πt g(t) を利用しましょう。

tomokreva
質問者

お礼

補足詳細説明ありがとうございます。 おかげさまで解くことができました。 ありがとうございました。

その他の回答 (2)

  • alice_44
  • ベストアンサー率44% (2109/4759)
回答No.3

済みません。誤記訂正です。 | ∫[C]f(z)dz | ≦ πt g(t) を利用しましょう。

  • rnakamra
  • ベストアンサー率59% (761/1282)
回答No.1

複素関数f(z)=exp(mz)/{1+exp(nz)} を次のような閉じた経路で積分しましょう。 z=r*exp(iθ) とします。 (1)実軸上をz:-R→R つまりθ=0,r:-R→R (2)"0"を中心にz=Rからz=Riまで円周上を1/4周 つまりr=R,θ:0→π/2 (3)"0"を中心にz=Riからz=-Rまで円周上を1/4周 つまりr=R,θ:π/2→π (2),(3)は同じ円周上の積分ですがあえて分けます。R→∞としたときの収束の判定方法が異なるために分けます。 (1),(2),(3)の経路はちょうど閉じているため、積分した値は留数定理を用いて求めることができます。 後はR→∞とすると(1)の経路での積分の値が求める値となり、(2),(3)はそれぞれ収束します。積分の経路の長さがRに比例しますので、関数の値が1/R^2よりも早く"0"に収束することを示してしまえばよいでしょう。 1周したところでの積分の値ですが、閉じた経路に囲まれた特異点の数自体は無限大に発散します。ご注意ください。

tomokreva
質問者

お礼

詳細説明ありがとうございます。 経路の取り方に困っていたので、助かりました。

関連するQ&A

  • 複素積分を教えていただけないでしょうか

    次の積分の値を複素積分によって求めよ. ∫[0→∞]exp(mx)/1+exp(nx)dx ただし,0 < m < n である. この問題はどういうふうに解けか教えていただけないでしょうか。

  • フーリエ変換の問題(複素フーリエ級数)

    フーリエ変換の問題(複素フーリエ級数) 次の-L≦X≦Lで定義された関数f(x)を f(X+2nL)=f(x)により -∞<x<∞に拡張した周期関数の複素フーリエ級数展開を求めよ f(x)=0(-L≦X<0), 1(0≦X<L) ここで教えていただいたのですが、 恥ずかしながらあまり理解できなかったため、再度質問します 複素フーリエ係数が cn==∫【-L→L】f(x)*exp(-i n x)/2πdx この公式より cn=∫【-L→0】0*exp(-i n x)/2πdx +∫【0→L】1* exp(-i n x)dx コレであっていますか? なんだか単純なような・・・ 回答お願いします

  • 数学の問題で困っています。

    数学の問題で困っています。 ちなみに私は数学が苦手です。 問,次の関数を-πからπまで定積分しなさい。 ※ただしm,nは自然数。 ※(m=n,m≠nの場合に分けて考える) ※(積を和になおして積分しなさい) 1.f(x)=sin(mx)\sin(nx) 2.f(x)=cos(mx)\cos(nx) 3.f(x)=cos(mx)\sin(nx) 解き方を出来れば詳しくお願いします。 誰かお願いしますm(._.)m

  • 複素積分

    以下の複素積分ができません。 どなたかおしえてください。 f(x)=(1/2π)∫[-∞~∞] (i/x)exp(ikx) dx (i は複素数)

  • 複素積分

    f(x)=1/(2+cos(x))の複素フーリエ係数c_nを求める過程で、 ∫_[-π<x<π]exp(-nix)dx/(2+cos(x))を計算したいのですが途中で行き詰まってしまったので指南のほどをお願いします。 ∫_[-π<x<π]exp(-nix)dx/(2+cos(x)) =∫_[0<x<2π]exp(-ni(x-π))/(2-cos(x))  積分範囲の変換 =2i∫_[周回積分]z^(-n)cos(nπ)dz/(z^2-4z+1)    z=exp(ix)と置いて置換 ここからnが奇数と偶数の場合に分けて計算しようと考えたのですが、どうしたらよいかわかりません。 よろしくお願いします。

  • 複素積分の問題

    複素積分の問題 次の複素積分の問題が分かりません. アドバイスいただけたら幸いです. 次の複素関数について以下の問に答えよ f(z) = z^-c / ( 1+z ) ただし、0<c<1 (1)複素平面上におけるf(z) の全ての特異点を求めよ (2)図中の閉曲線をγとする閉曲線γの矢印にそった向きの「周回積分」 ∫γ f(z)dzを求めよ γRは半径(R>1)の円し,γrは半径(r<1)の円を表す (3)z=R exp(iθ)またはr=R exp(iθ) (0<θ<2π)とおくことにより, 曲線及び曲線に沿った「周回積分」の絶対値 │∫γR f(z)dz│および、│∫γr f(z)dz│ がR→∞、r→0の極限において0に収束することを証明せよ (4)以上の結果を用い、次の「積分」 ∫(0→∞) x^-c / ( 1+x ) dx = π/ (sinπc) を証明せよ

  • シュレディンガー/複素積分

    すみません、なにかヒントをください。学部2年女子です。 シュレディンガー方程式、 ih(∂ψ/∂t)=-(h^2/2m)(∂^2ψ/∂x^2) の解Ψ(x,t)=1/√(2π)∫exp(-ihk^2/2m+ikx)・F(k)dk F(k)を求めたところ、 F(k)=A√2σexp(-σ^2k^2) になりました。 そこで解にあてはめて、積分をしたいのです。 (hバーをhとかきました。Aは定数です。(規格条件から求め済)積分区間はどれも-∞から∞です。) 積分から先に息詰まりました。 自分では ∫exp(-ihk^2/2m+ikx)・exp(-σ^2k^2)dk の計算でオイラーの公式でとくのかな? とも考えましたが、先生がヒントでガンマ関数を使うとか言っていて、 もうよくわかんない状態です。 ちなみにまだガンマ関数、を習っていなく、使い方もよくわかりません。(一応調べましたが、理解できる能力がありませんでした) 複素関数は本当に初歩的な複素積分しかやっていません。 なにか解けるヒントをと思い投稿しました。 恐縮ですがどうぞご教授のほどおねがいします。 また、見難い文章ですみません。 なにか間違いがあればご指摘くださぃ

  • 複素関数論についての質問

    現在、複素関数にかんしての勉強をしているのですが 3つほど質問があります。 まず、複素関数を利用して解ける定積分というのは積分範囲が∞~-∞のものに限るのでしょうか? 教科書では、∫[∞~-∞](1/(x^2 + a^2) dx a>0 の計算をする問題で、特異点がaiと-aiの2つあるにも拘わらず +aiの周りでしか周回積分していないのですが なぜなのでしょうか? 出てくる特異点全ての周りで回す必要はないのでしょうか? 特異点が2つある場合で1つだけ回す場合と2つ回す場合は実空間でいうとどういうことをしていることに対応するのでしょうか? 何卒よろしくお願い致します。

  • デルタ関数

    http://fujimac.t.u-tokyo.ac.jp/fujiwara/Mathematics-2/Sec5.pdf のpdfファイルのページ数で5-6ページ、pdfの下部に振られている番号で77-78ページ、に書かれていることについて質問です。 δ_n(x)=(√(n/π))e^(-nx^2) とし、δ(x)=lim[n→∞]δ_n(x) とする。 1つめ。 関数f(x) を無限回連続微分可能で、かつ|x|→∞にした時、任意のNで定義される|x|^(-N) より早く0 になる関数(急減少関数) であるとする。例えば|x|の充分大きいところでexp(-x^2) の様に振る舞うと考えればよい。この時 ∫[-∞→∞]f(x)δ (x)dx=lim[n→∞]∫[-∞→∞]f(x)δ_n (x)dx=f(0) であることが示される。 と、記載されているのですが、何故このように言えるのでしょうか? 2つめ。 充分大きいn について、 δ_n(x) はx = 0 を中心とした非常にせまい範囲内でのみ0 でない値をとる。したがってf(x) はx≒0付近での値だけが寄与して ∫[-∞→∞]f(x)δ_n (x)dx≒f(0)∫[-∞→∞]δ_n (x)dx=f(0) となるからである。 と記載されていますが、何故 ∫[-∞→∞]f(x)δ_n (x)dx≒f(0)∫[-∞→∞]δ_n (x)dx のような、式変形が可能なのでしょうか? 3つめ。 もう少し厳密な形で書くなら次のように示せばよい:  |∫[-∞→∞]f(x)(√(n/π))e^(-nx^2)dx-f(0)| =|∫[-∞→∞]{f(x)-f(0)}(√(n/π))e^(-nx^2)dx| ≦Max|f^(1)(x)|∫[-∞→∞]|x|(√(n/π))e^(-nx^2)dx と、記載されていますが、何故、 |∫[-∞→∞]{f(x)-f(0)}(√(n/π))e^(-nx^2)dx|≦Max|f^(1)(x)|∫[-∞→∞]|x|(√(n/π))e^(-nx^2)dx と、言えるのでしょうか? 宜しくお願いします。

  • 複素関数の問題です

    複素関数の問題です。 次の問題が解けなくて困っています。どなたか解説できる方宜しくお願いします。 f(z)は,|z|≦1の領域で正則な複素関数とする. (1) nを自然数とするとき,∫[0→2π]f(e^iθ)cos(nθ)dθ={π/(n!)}f^(n)(0)が成り立つことを示せ. (e^iθ=zで置換) (2) mを自然数とするとき,∫[0→2π]f(e^iθ)cos^(2m)θdθ={π/2^(2m-1)}Σ[k=0,m]C(2m,k){f^(2m-2k)(0)}/{(2m-2k)!}が成り立つことを示せ.ただし,f^(0)(0)=f(0)とする. (3) ∫[0→2π]cos(2mθ)cos^(2m)θdθ=π/2^(2m-1)を示せ. (zの領域に注意)