• ベストアンサー

複素積分

以下の複素積分ができません。 どなたかおしえてください。 f(x)=(1/2π)∫[-∞~∞] (i/x)exp(ikx) dx (i は複素数)

質問者が選んだベストアンサー

  • ベストアンサー
  • rnakamra
  • ベストアンサー率59% (761/1282)
回答No.1

次の4つの経路からなる閉じた経路での積分を考えましょう。 (0<r<Rとします) (1)実軸上r→Rでの積分 (2)"0"を中心に半径Rの半円R→-R(上半面を反時計回りに半周)での積分 (3)実軸上-R→rでの積分 (4)"0"を中心に半径rの半円-r→r(上半面を時計回りに半周)での積分 (1)~(4)で一周したときの積分の値を求めてください。すぐにわかるはずです。 次にr→0,R→∞とします。 (1)と(3)を足したものが求める積分の値になります。 (2)はよく出てくる形の物で収束値はすぐにわかると思います。 (4)が少しだけ頭を使います。さほど難しくはありません。

その他の回答 (1)

  • rnakamra
  • ベストアンサー率59% (761/1282)
回答No.2

#1のものです。 #1の回答はk>0と言う前提で答えています。k<0の場合やkが複素数の場合は成り立ちません。ご注意ください。k<0の場合は(2),(4)の経路を下側に持ってくるとよいでしょう。

関連するQ&A

  • 複素積分

     次の実積分を複素積分したいのですが、やり方が分かりません。 どなたか、解答もしくは方針を教えてください。 1)∫[-∞~∞] exp{-(x-a)^2/b} dx ただし、bは複素数でRe(b) >0 、 aは定数 2)∫[-∞~∞] sinωx exp{-(x-a)^2/a} ω,aは定数

  • 複素積分の初歩的な質問

    以下のような問題についてなのですが。。。 問 複素平面z上の単連結領域 -1<Imz<1 で、次の z=-1 から 1 までの 定積分を求めよ。 ∫[-1,1]1/(z-i)dz (被積分関数が 1/(z-i),積分範囲が[-1,1]) 僕は実数関数のノリで [log|z-i|]を原始関数としてやり答えが0になってしまったのですが 解答を見ると以下のようにやっています。 積分経路を z-i = √2*exp(iθ) (-3pi/4 <= θ <= -pi/4) としてあとは普通に積分。(答えは(pi*i)/2) つまり -1<Imz<1,-1<=Rez<=1 の範囲で被積分関数は 正則だからコーシーの積分定理より経路を変えても積分値は同じ、 -1から1へまっすぐ積分するのではなく扇形の弧を描くように 積分するということです(と思います)。 で、模範解答のやり方はそれはそれでよく納得できたのですが 僕が最初にやったやり方はなにが不味いのでしょうか。 そもそも原始関数がlog|z-i|がおかしいのでしょうか? この公式(∫f(x)'/f(x) dx = log|f(x)|)は複素数の範囲だと 成り立たない公式なのでしょうか? 複素関数の積分で被積分関数が特異点を持つときは exp(iθ)を絡ませるのが常套手段なのでしょうか? よろしくお願いいたします!

  • 複素積分

    f(x)=1/(2+cos(x))の複素フーリエ係数c_nを求める過程で、 ∫_[-π<x<π]exp(-nix)dx/(2+cos(x))を計算したいのですが途中で行き詰まってしまったので指南のほどをお願いします。 ∫_[-π<x<π]exp(-nix)dx/(2+cos(x)) =∫_[0<x<2π]exp(-ni(x-π))/(2-cos(x))  積分範囲の変換 =2i∫_[周回積分]z^(-n)cos(nπ)dz/(z^2-4z+1)    z=exp(ix)と置いて置換 ここからnが奇数と偶数の場合に分けて計算しようと考えたのですが、どうしたらよいかわかりません。 よろしくお願いします。

  • 複素積分についての質問です。

    複素積分についての質問です。 ∫1/(1+x^3)dx  積分範囲はx:0~∞ という問題です。 f(z)=1/(1+z^3)とおいて留数を考えて計算していこうと思いました。 極が z=1、exp(iπ/3)、exp(-iπ/3) で出てきました。 ここで積分経路をどうすればいいのか分からなくなりました。 解答では積分経路を三つに分けていました。 経路(1):線分OA (z=x) 経路(2):弧AB  (z=R*exp[iθ] 経路(3):線分BO (z=r*exp[i*2π/3]) としていました。経路(1)(2)は納得できるんですが、(3)がよくわかりません。 (3)のように、ある適切な経路をうまく選ばなくては解けないのでしょうか。

  • シュレディンガー/複素積分

    すみません、なにかヒントをください。学部2年女子です。 シュレディンガー方程式、 ih(∂ψ/∂t)=-(h^2/2m)(∂^2ψ/∂x^2) の解Ψ(x,t)=1/√(2π)∫exp(-ihk^2/2m+ikx)・F(k)dk F(k)を求めたところ、 F(k)=A√2σexp(-σ^2k^2) になりました。 そこで解にあてはめて、積分をしたいのです。 (hバーをhとかきました。Aは定数です。(規格条件から求め済)積分区間はどれも-∞から∞です。) 積分から先に息詰まりました。 自分では ∫exp(-ihk^2/2m+ikx)・exp(-σ^2k^2)dk の計算でオイラーの公式でとくのかな? とも考えましたが、先生がヒントでガンマ関数を使うとか言っていて、 もうよくわかんない状態です。 ちなみにまだガンマ関数、を習っていなく、使い方もよくわかりません。(一応調べましたが、理解できる能力がありませんでした) 複素関数は本当に初歩的な複素積分しかやっていません。 なにか解けるヒントをと思い投稿しました。 恐縮ですがどうぞご教授のほどおねがいします。 また、見難い文章ですみません。 なにか間違いがあればご指摘くださぃ

  • 複素積分の問題

    複素積分の問題 次の複素積分の問題が分かりません. アドバイスいただけたら幸いです. 次の複素関数について以下の問に答えよ f(z) = z^-c / ( 1+z ) ただし、0<c<1 (1)複素平面上におけるf(z) の全ての特異点を求めよ (2)図中の閉曲線をγとする閉曲線γの矢印にそった向きの「周回積分」 ∫γ f(z)dzを求めよ γRは半径(R>1)の円し,γrは半径(r<1)の円を表す (3)z=R exp(iθ)またはr=R exp(iθ) (0<θ<2π)とおくことにより, 曲線及び曲線に沿った「周回積分」の絶対値 │∫γR f(z)dz│および、│∫γr f(z)dz│ がR→∞、r→0の極限において0に収束することを証明せよ (4)以上の結果を用い、次の「積分」 ∫(0→∞) x^-c / ( 1+x ) dx = π/ (sinπc) を証明せよ

  • 複素積分を使わずに解ける

    複素関数の勉強をしていて、疑問に思ったことがあります。 次の定積分を求めよ、という問題です。 ∫(from 0 to ∞)exp(-x^2) cos2bx dx (bは定数) この問題は、複素平面上の長方形状の積分路に沿って積分して答えが出せたのですが、以下のようなやり方をしてみました。 まず、求める積分はbの関数とみなせるので、I(b)とおきます。 次にI(b)をbで微分します。被積分関数をbで偏微分し、部分積分を使うと、 dI(b)/db = -2bI(b) となります。これはbの微分方程式になっているので、これを解くと、 I(b) = Aexp(-b^2) (Aは定数) となります。元の式にb=0を代入すれば、 I(0) = sqrt(π)/2 となるので、 I(b) = sqrt(π)exp(-b^2)/2 という結果になります。 なんだか複素積分をするよりも簡単に答えが出せたのですが、このやり方でもよいのでしょうか。参考書にはこの方法が載っていなかったのですが。

  • 複素積分

    I1=∫[-∞,-∞]cos(a*x)/(x^2+b^2)dxを複素積分を使って求めます。 まず ∫[-∞,-∞]cos(a*x)/(x^2+b^2)dxの被積分関数の分子にi*sin(a*x)を (iは虚数単位)を加えても加えた部分が奇関数でかわらないので加え ると ∫[-∞,-∞]{cos(a*x)+i*sin(a*x)}/(x^2+b^2)dxとなります するとI=∫[-∞,-∞]exp(i*a*x)/(x^2+b^2)dxです。 ここで複素積分 I=∫exp(i*a*z)/(z^2+b^2)dz (積分路は実軸と虚軸の正の部分を通る 反時計回りの半径Rの半円) またI2=∫exp(i*a*z)/(z^2+b^2)dz (積分路は虚軸の正の部分のみを通 る反時計回りの半径Rの半円)を考えるとRが十分大きいとき I=I1+I2・・・(1)になります。 Iは留数定理よりI=2*π*i*Res[f,i*b]=π*exp(-a*b)/b・・・(2) I2はz=R*exp(i*θ)とおき I2=∫[0,π]exp(i*a*R*exp(i*θ))/(R*exp(i*θ)^2+b^2)dθ =∫[0,π]exp(-a*R*sinθ+)*exp(i*a*R*cosθ)*i*R*exp(i*θ)/(R^2*exp (2*i*θ)+b^2)dθ 三角不等式より 0<|I2|<∫[0,π]|exp(-a*R*sinθ+)*exp(i*a*R*cosθ)*i*R*exp(i*θ)|/|(R^2*exp(2*i*θ)+b^2)|dθ<π*R*exp(-a*R*sinθ)/|-R^2+b^2|・・・(3) ここでsinθ >0よりでexp(-a*R*sinθ)<1なので π*R*exp(-a*R*sinθ)/|-R^2+b^2|<π*R/|-R^2+b^2|となり π*R/|-R^2+b^2|はR-->∞で0なので結局 |I2|-->0   なので(1)より I1=π*exp(-a*b)/bが答えです。  これはわかるのですが、スタートで i*sin(a*x)ではなく-i*sin(a*x)を加えても変わらないですよね? そこで-i*sin(a*x)を加えて実際にやってみると (2)の部分はπ*exp(a*b)/bに変わってしまい、また (3)の部分はπ*R*exp(a*R*sinθ)/|-R^2+b^2|となってしまいこれでは R-->∞で発散するように思えます。 どこがまちがっているのでしょうか

  • 複素積分を教えていただけないでしょうか

    次の積分の値を複素積分によって求めよ. ∫[0→∞]exp(mx)/1+exp(nx)dx ただし,0 < m < n である. この問題はどういうふうに解けか教えていただけないでしょうか。

  • 積分∫[-∞,∞]cosbx*exp(-ax^2)dx

     タイトルの実定積分を複素積分を利用(留数定理等)して行いたいのですが、上手くいきません。  a=const>0,b=const,ガウス積分利用可です。  フーリエんとこ勉強していたのですが、 形的には∫[∞,∞]exp(-ikx)*f(x)dxが一般的な形ではないかと・・ f(x)=exp(-ax^2)の場合です。 よろしくお願いします。