• ベストアンサー

EはK-線形空間とA、Bの基底から

EはK-線形空間。Eの部分空間{a_1,a_2,…,a_m},{b_1,b_2,…,b_n}をそれぞれA、Bの基底として、 1:A∩B={0} 2:{a_1,…,a_m,b_1,…,b_n}は一次独立 この1と2が同値と示せますか?

質問者が選んだベストアンサー

  • ベストアンサー
  • tmpname
  • ベストアンサー率67% (195/287)
回答No.1

少し問題文として意味不明なところがあるけど (「A, BはEの部分空間、{a_1,a_2,…,a_m}, {b_1,b_2,…,b_n}はそれぞれA, Bの基底」とでも書いておかないと意味不明ですよね)、方針としては * 2->1 A∩B ∋ v ≠ 0 として、vは{a_1,a_2,…,a_m}, {b_1,b_2,…,b_n}それぞれの一次結合として書く書き方があるから、そこから{a_1,…,a_m,b_1,…,b_n}が一次従属である事を示せば良い。 * 1-> 2 {a_1,…,a_m,b_1,…,b_n}が一次従属であるなら、a_iたちの中のどれかはその他のa_iたちとb_jたちの一次結合で書ける(ことを示す)。そこから、(a_iたちのある一次結合) = (b_jたちのある一次結合)という式が導かれることを示し、A∩B ∋ v ≠ 0なるvがあることを示す。

全文を見る
すると、全ての回答が全文表示されます。

関連するQ&A

  • 線形部分空間の次元と基底

    K=R or C V=M(n,n;K):n次正方行列 W={X∈M(n,n,K) | Tr(X)=0} となる線形空間Vとその部分集合Wがあります。 1)Wが線形部分空間になることを示す. 2)Wの基底と次元を求める. 上記の1),2)を示したいのですが、1)は示せたのですが 2)の基底と次元の求め方がわかりません。 列ベクトルの基底等は連立などを用いて解くことができるのですが、 このような空間の基底を求めるのはどのように解放を進めればよいのでしょうか?

  • 線形空間

    サイトなど見てみたのですがわからないのでお願いします。 V:係数体K上の線形空間 とする。 {a1,a2,...,am}、{b1,b2,...,bn}がともにVの基底 であるとき m=nである。 線形空間(乗法(逆元)が定義されていない)なので行列のrankは使えないと思うのですが 「Vの任意の元はa1,a2,...,am(b1,b2,...,bn)の線形結合で表せる。」 「{a1,a2,...,am}、{b1,b2,...,bn}は線形独立」 をどう使えばよいかが分かりません。

  • 線形空間は必ず基底を持つ(有限次元)

     先日某所で、明らかに有限次元のベクトル空間に関すると思える話に出会い、   「線形空間は必ず基底を持つ!({0}は除く)」 とやってしまいました。その時、   「持つためには、選択公理が必要」 という指摘を頂いて、「有限次元では(選択公理不要)」と加えたのですが「これって本当にそうなのか?」とふと思い、質問しています。以下、有限次元に限定します。 (1)今までは・・・  今までは、こう思って来ました。「次元の等しい線形空間は、みな同型」という事から、要は数ベクトル空間について、基底を持つかもたないか、調べれば良いはずだと。  n次の(n次元とは言いませんの)数ベクトル全体をVをすれば、Vには 自然な生成系、  B={(δi1),(δi2),・・・,(δin)}(δijは、クロネッカーのデルタ) があり、Bが生成系である事はすぐわかり、(δij)らが互いに独立である事もすぐわかり、さらに任意のv∈VがBのベクトルに従属なのもすぐわかるから、n次の数ベクトル全体Vは、長さがnの基底を持ちn次元で、有限次元線形空間は、選択公理抜きで必ず基底を持つと。 (2)定義に戻ってみると・・・  ところが基底の定義は、   「Vから取り出せる、独立なベクトルの集合で、最大本数を持つもの」 となると思います。ここでは有限次元に限定しているので、最大本数と書きました。  この定義に忠実に従って基底の有無を調べるとしたら、Vの部分集合全てを調べなければならない気がします。このような操作のためには、やっぱり選択公理が必要でないのか?、と突然気づきました。有限次元であっても、Vに含まれるベクトルは、無数にあるので・・・。  (1)と(2)は、本質的に同じでなければならないと思います。そうすると(1)においても、どこかで選択公理のお世話になっているんでしょうか?。

  • 線型空間 基底の証明

    U, V, U @ V 線型空間 f : U × V → U @ V 双線型写像 (U @ V, f) U と V のテンソル積 f(u, v) = u @ v dim U = m, 基底 {u_1, u_2, ..., u_m} dim V = n, 基底 {v_1, v_2, ..., v_n} S = {u_i @ v_j | 1 ≦ i ≦ m, 1 ≦ j ≦ n} 基底を証明したい <S> = U @ V は f(u, v) を計算して証明できたのですが S が線型独立の証明を教えてください r_11(u_1 @ v_1) + ... + r_mn(u_m @ v_n) = 0 とおいたまま立ち往生です

  • 線形空間、次元、基底

    V=C^nを実線形空間とするとき、Vの次元と一組の基底を求めたいのですが、よく分かりません。C^nの感覚がよく分かりません。 お願いします。

  • 次に示す線形空間の基底について

    線形空間 W={a*exp(x)+b*exp(-x)|a,b∈R,x∈R} の基底について求めたいのですが求め方がよくわかりません。 ご存知の方がいらっしゃいましたら回答をお願いします。

  • 線形空間についての質問です

    線形空間 K³のベクトル(1,2,-1)と(0,3,-1) を基底とする K³ の部分空間を W とするとき、W の直交補空間 W⊥ の基底を求めよ この問題が分かりません…

  • 線形空間と写像、基底について

    線形代数の問題でちょっと分からないので分かる方教えてください。 問題は、 次の集合Xに対して V:=XからRへの写像全体のなす実線形空間 とする。Vの基底を見つけよ。 (1)X={x_1,x_2,x_3} (2)X={x_1,x_2,x_3,……,x_n} (3)X={x_1,x_2,x_3,……,x_n,……} です。写像の基底が分かりません。 よろしくお願いします。

  • R上の線形空間の基底を与える事によるK上のテンソル積P_n(×)Rを述べよ

    どうもです。 Consider K:={a+b√5;a,b∈Q},P_n:={Σ[i=0..n]a_ix^i;a_i∈K}. Describe P_n(×_K)R by giving a basis of the vector space over R. R上の線形空間の基底を与える事によるK上のテンソル積P_n(×)Rを述べよ。 と言う問題なのですが何と述べればいいのでしょうか?

  • 明日テストの線形代数の線形空間、部分空間の問題で質問です。

    明日テストの線形代数の線形空間、部分空間の問題で質問です。 ________1__-1___2___-3 A=-2___1___1___-4 =(a1,a2,a3,a4)について、次の問いに答えよ。 ________3__-5__16_-29 (1) __________x1 R^4の部分空間 V=(x={x2}∈R^4:Ax=0)の基底と次元を求めよ。 __________x3 __________x4 (2) __1 b=( k)∈R^3とする。連立方程式Ax=bを持つように定数kの値を定めよ。 __-5 また、そのときの解を求めよ。 (3) ベクトルv=(1)∈R^3はR^3の部分空間<a1,a2,a3,a4>の要素か? 線形空間の理解が足らず解く方針が全く定まらないので多少の解説を付けて回答していただけるとありがたいです。 あと行列の書き方がわからず見にくくなってしまいました、すみません。