• ベストアンサー

定積分と不等式

I(第n項)=∫(1→e) (logy)^n dy (n=1,2,3,……)において lim(n→∞) n×I(第n項) を求めよ。 答えのみ、0 とあり、算出の過程がわかりません。 I(第n+1項)=e-(n+1)×I(第n項) logy≦1/e×y が、ヒント(他の枝問の答え)としてありました。 よろしくお願いします。 I(第n項), I(第n+1項)は、数列です。

質問者が選んだベストアンサー

  • ベストアンサー
noname#152422
noname#152422
回答No.1

任意のnに対して、 0≦I(第n項)≦e n×I(第n項)+(n+1)×I(第n+1項)×n/(n+1)=(e-n×I(第n項))×n を使って、 0≦e-n×I(第n項)≦(e/n)+(e/(n+1)) を導く。

villtack
質問者

お礼

回答ありがとうございました。

全文を見る
すると、全ての回答が全文表示されます。

関連するQ&A

  • 定積分と不等式

    n=0,1,2,...について In=(-1)^n/n!∫[0→2]x^ne^x dx とおく。 ただし0!=1とする。 (1)In とIn_1の関係式を求めよ。 (2)0≦x≦2に対してe^x≦e^2であることを利用して、次の不等式を示せ。  1/n!∫[0→2]x^ne^x dx≦2e^2(2/3)^n-1 (n=1,2,...) (3)極限 lim[n→∞]Σ[k=0→n](-1)^k2^k/k!を求めよ。 (1)はInを変形してできました。 (2)でe^x≦e^2からx^ne^x≦e^2x^n すなわち ∫[0→2]x^ne^x dx≦∫[0→2]e^2x^n dx を使おうと思ったのですが、1/n!と(1/3)^n-1が作れずできませんでした。 (3)はΣ[k=0→n](-1)^k2^k/k!=(-1)^02^0/0!+Σ[k=1→n](-1)^k2^k/k! =1+Σ[k=1→n](-1)^k2^k/k! となり(1)を利用できそうな感じがしたのですが、よくわかりませんでした。 よろしくお願いします。

  • 積分を含んだ数列、

    I(n)=∫[1->e](logx)^n dx とおくとき I(n)+nI(n-1) を求めよ、という問題でアプローチがわかりません 初項は I(1)=∫[1->e](logx)^1 dx = [1->e] (xlogx-x)=-1 第2項以降で躓いてしまいました。 I(2)=∫[1->e](logx)^2 dx パターンについて、ヒントがあればご教授ください。 注: I(n)のカッコ内のnは数列で使う添え字です。

  • 大学の数列、極限について質問です!

    大学の講義で出た問題がわかりません。 問一 a(n)>0、lim(n→無限)a(n+1)/a(n)=r<1ならば、数列a(n)はある項から先は有界な減少列となる事を示せ。 問二 lim(n→無限)a(n)=0を示せ。 問三 lim(n→無限)x^n/n!(x>0)を求めよ。 問二は問一が出来たら簡単に書ける事はわかるんですが、 問一と問三がさっぱりわからないです。 わかる人教えてくれませんか。

  • 定積分と不等式

    級数が発散するか調べる箇所で、2つの定積分と不等式がわからないので質問します。 例1 1+1/2+1/3+1/4+・・・+1/n・・・=∞であるなぜなら、 1+1/2+1/3+1/4+・・・+1/n>∫(1→n)(1/x)dx=logen・・・(1)であり、lim(n→∞)logen=∞であるから。 自分の考えた(1)の証明は、自然数kに対して、k≦x≦k+1とすると、1/(k+1)<1/x<1/k ∫(k→k+1){1/(k+1)}dx<∫(k→k+1){1/x}dx<∫(k→k+1){1/k}dx、 1/(k+1)<∫(k→k+1){1/x}dx<1/kより、 Σ(k=1→k=n-1)∫(k→k+1){1/x}dx<Σ(k=1→k=n-1)(1/k)、 ∫(1→n)(1/x)dx<1+1/2+1/3+1/4+・・・+1/(n-1)と最後の項が1/nになりません。 どなたか1+1/2+1/3+1/4+・・・+1/n>∫(1→n)(1/x)dxを証明してください。 例2 1^2+1/2^2+1/3^2+1/4^2+・・・+1/n^2・・・(2)は収束する。なぜなら、いつでも1^2+1/2^2+1/3^2+1/4^2+・・・+1/n^2<1+∫(1→n)(1/x^2)dx・・・(3)であり、 ∫(1→n)(1/x^2)dx=1-1/n<1だから(2)は2を越えない。自分の考えた(3)の証明ですが、自然数kに対して、k≦x≦k+1とすると、k^2≦x^2≦(k+1)^2、 1/(k+1)^2<1/x^2<1/k^2 ∫(k→k+1){1/(k+1)^2}dx<∫(k→k+1){1/x^2}dx<∫(k→k+1){1/k^2}dx、 1/(k+1)^2<∫(k→k+1){1/x^2}dx<1/k^2より、 Σ(k=1→k=n-1){1/(k+1)^2}<Σ(k=1→k=n-1)∫(k→k+1){1/x^2}dx 1/2^2+1/3^2+1/4^2+・・・+1/n^2<∫(1→n)(1/x^2)dxの両辺に1を加えるでよいでしょうか?間違っていたら訂正お願いします。

  • 漸化式について

    a[1]=3 a[n+1]=a[n]+n と定義される数列があります。 公差がnなので、 a[n]=3+(n-1)n=n^2-n+3 と一般項が求まります。 しかし、答えをみると、 a[n+1]-a[n]=n を利用し、階差数列b[n]にした後に、a[n]の一般項を求める形を取っています。 そして答えが、(n^2-n+6)/2と、先程求めた答えと異なります。 最初に求めた方法は使えないのでしょうか? 何方か説明お願いします。

  • 積分の問題です

    自然数nに対して、I(n)=∫[0→1](x^n)(e^-x^2)dxについて lim[n→∞]nI(n)を求めよ.という問題です。答えはe^-1です。 平均値の定理や不等式を用いたのですがうまくいきません。 教えて下さい。

  • 数列がわかりません!助けてください!

    数列の問題で質問です! 問1 a1=0 an+1=2an+nで定義される数列anの一般項を求めよ 問2  a1=1  an+1=3an+3のn乗(n=1.2.3・・・)によって定義された数列anがある。一般項anをnであらわせ 問3 a1=1 an+1=2an/an+5(n≧1)で定められる数列an の一般項を求めよ です。3以外の答えはわかっていて、 問1 an=2のn乗-n-1 問2 an=n・3のn-1乗です。 とき方がわかりません。。。 わかりにくい表記ですいません。

  • 階差数列

    数列{2,4,7,11,16,22,29、・・・}について、 次の問いに答よ。 (1)段差数列の第n項をbnとするとき、bnをnの式で表せ。 (2)もとの数列{2,4,7,11,16,22,29、・・・}  の第n項(n≧2)をanとするとき、anを階差数列の 第k項を使って、Σを用いて表せ。ただし計算はしないでよい (3)上の(2)の計算をして、n≧2のときanを求めよ。 (4)Σ_[k=1,n]a(k)を求めよ。 私が解いてみた答は (1)がbn=n+1 (2)が2+Σ_[k=1,n-1](a+1)(k) で、(3)がわかりません。 (4)は全然見当もつきません。 よろしくおねがいします。

  • 漸化式と極限の問題です

    数列{a_n}を次のように定義する。 a_1=c (0<c<1) (2-a_n)a_(n+1)=1 このとき、lim(n→∞)a_n=1を示せ。 一般項a_nの式すら求められません。 よろしくお願いします。

  • 微分積分学・数列の問題

    n≧0、p∈Nに対して、漸化式 a[0] = α > 1、a[n+1] = {p/(p+1)}a[n] + 1/{(p+1)(a[n])^p} で与えられる数列{a[n]}を考える。 この時lim[n→∞](a[n])はどうなるか。 この問いが分かりません。教えてください。