• ベストアンサー

導き出された固有ベクトル

例題で読んでも分からないところがあります。 Let A=[.95 .03].    [.05 .97] Aを[.95 .03]だとしなさい。   [.05 .97] Analyze the long-term behavior of the dynamical system defined by Xk+1=AXk (k=0, 1, 2, ...) with X0=[.6].                    [.4] Xk+1=AXk (k=0, 1, 2, ...) with X0=[.6]で定義された動的なシステムの長期的な動きを解析しなさい。                    [.4] Solution The first step is to find the eigenvalues of A and a basis for each eigenspace. The characteristic equation for A is 0=det[.95-λ .03 ]=(.95-λ)(.97-λ)-(.03)(.05)    [ .05 .97-λ]    =λ^2=1.92λ+.92=(by the quadratic formula)=1 or .92. 解法 まず最初にすることはAの固有値とそれぞれのeigenspaceの基底を見つけることだ。 Aの特性方程式は 0=det[.95-λ .03 ]=(.95-λ)(.97-λ)-(.03)(.05)    [ .05 .97-λ]    =λ^2=1.92λ+.92=(by the quadratic formula)=1 or .92. It is readily checked that eigenvectors corresponding to λ=1 and λ=.92 are multiples of v1=[3] and v2=[ 1]   [5]    [-1] respectively. λ=1とλ=.92に対応する固有ベクトルがそれぞれの倍数であることを確かめるのは容易だ。 …ここから先もまだまだ続くのですが、割愛させていただきます。 さて、ここのv1, v2がどうやって導き出されたのかがまったく分かりません。 まっっったく関係のない数字のように見えるのですが…。 分かる方、説明をお願いします。

質問者が選んだベストアンサー

  • ベストアンサー
回答No.3

ginkgoさん、こんにちは。 >It is readily checked that eigenvectors corresponding to λ=1 and λ=.92 are multiples of v1=[3] and v2=[ 1]   [5]    [-1] respectively. λ=1とλ=.92に対応する固有ベクトルがそれぞれの倍数であることを確かめるのは容易だ。 固有値λ=1に対する固有ベクトルが V1=[3]  [5] 固有値λ=92に対する固有ベクトルが v2=[1]  [-1] である、というのは一体どこから出てきたのか?ということですね。 固有ベクトルとは、そもそも Ax=λx となるようなベクトルxですから #1の方の回答どおりですが、 (A-λI)(x)=0 を解いてxを求めればいいことになります。 A=[.95 .03]  [.05 .97] でしたので、 λ=1のとき、 [.95-1 .03][x1] [0] [.05 .97-1][y1] = [0] これからは -0.05x1+0.03y1=0 0.05x1-0.03y1=0 という式が導かれるので、そのような[x1,y1]の組み合わせとして [x1,y1]=[3,5]←横に書いていますが、縦だと考えてください。 を一つとってくれば充分である。 v2=[x2,y2]も同様に導き出してください。 http://www007.upp.so-net.ne.jp/masema/eigenvalue.html http://next1.cc.it-hiroshima.ac.jp/numeanal2/node10.html

参考URL:
http://www007.upp.so-net.ne.jp/masema/eigenvalue.html
ginkgo
質問者

お礼

あら、簡単じゃないですか。←それが分からなかった奴(^^ゞ 回答を見てやっと気付きました。 (A-λI)(x)=0の式は今まで嫌というほど使ってきたのですが、 ここでこの式を使うとはこの説明からは読み取れませんでした。 ちょっと飛び過ぎの気がします、なにせ読者にとっては初めてのことを説明しているのですから…。 どうせなら「…固定ベクトルを求めてみると、それぞれの倍数であることを確かめるのは容易だ」とか書いてほしかったです>出版社さん すっきりしました。 ありがとうございました!

全文を見る
すると、全ての回答が全文表示されます。

その他の回答 (2)

  • keyguy
  • ベストアンサー率28% (135/469)
回答No.2

記述の不備があったので訂正: 固有値がλの2次列固有ベクトルvは (A-λ・E)・v=0 の方程式を求めればいいのです。 2つの固有値に対する固有ベクトルは定数倍を除いて一意に定まります。 これは当たり前のこととして導出過程を省略して結果だけをだしているのです。 動的システムをやっているのですからこの程度は分かっているとしているのです。

ginkgo
質問者

お礼

実はこれが動的システムについての一番最初の説明なのです。 さすがに予想できませんでした。 今までの例題はほとんど省略がなく、とても分かりやすいのですが、本当にここだけですね、疑問に思ったのは。 実は教授にも尋ねたのですが、時間もなかったせいか「うーん、Aをrrefしてみたら?」と言われました。 やってみて即座に違うと判明しましたが、それ以上責めるのも酷なのでここで質問しました。 すっきりしました。 ありがとうございました!

全文を見る
すると、全ての回答が全文表示されます。
  • keyguy
  • ベストアンサー率28% (135/469)
回答No.1

固有値がλの固有ベクトルvは (A-λ)・v=0 の方程式を求めればいいのです。 2つの固有値に対する固有ベクトルは定数倍を除いて一意に定まります。 これは当たり前のこととして導出過程を省略して結果だけをだしているのです。

ginkgo
質問者

お礼

ありがとうございます。

全文を見る
すると、全ての回答が全文表示されます。

関連するQ&A

  • 固有の量とは何ですか?

    K上の有限次元線形空間Vに対して、写像f:V→Vは線形写像。 Vの基底εに対する、fの表現行列をAと表すとき、 (1)det(A) (2)Tr(A) (3)rank(A) が基底εのとり方によらず定まるということを線形変換fの固有の量 であるとのことなのですが、いまいち固有の量というものがイメージ できません固有の量とはなんなのでしょうか。 そして、なぜとり方にやらないのでしょうか?

  • LATEXの問題が解けません…

    学校の課題で図のような文章を作るため何時間もかけているのですが、どうしてもできずにいます 規定は10pt 二段組a4jで、文書スタイルはjsarticleです 途中までですが、 \documentclass[10pt,twocolumn,a4j]{jarticle} \title{Sample document of\LaTeXe{}including equations} \author{ここに番号} \date{\today} \maketitle \begin{document} \section{Quadratic formula} We learned, in junior high school, roots of a quadratic equation \[ ax^2+bx+c = 0 \] called "quadratic formula". \begin{align} \x = \frac{-b±\sqrt{b^2-4ac}}{2a} \end{align} In high school, we learned another formula which gives roots of a quadratic equation \[ ax2+2b0x+c = 0. \] The formula can be derived from Eq. (1), \begin{align} x = \frac{-2b' ±\sqrt{\left(2b\right)'^2-4ac}}{2a}\\ = \frac{-2b' ±\sqrt2{b'^2-ac}}{2a}\\ =\frac{-b' ±\sqrt2{b'^2-ac}}{a} \end{align} The formula (Eq. (1)) is proved by the method of completing the square. \begin{align} ax^2+bx+c=0 \end{align} \begin{align} a\left(x+\frac{b}{2a}\right)^2-\frac{b^2}{4a}+c=0 \end{align} \begin{align} a\left(x+\frac{b}{2a}\right)=\frac{b^2}{4a}-c \end{align} \begin{align} \left(x+\frac{b}{2a}\right)=±\sqrt{\frac{b^2}{4a}}{-c} \end{align} \section{Discriminant} Because the nature of a quadratic polynomial is de- termined by the square root of the quadratic formula, we call them \[ ( D = b^2-4ac, D0 = b'^2-ac) \] "discrimi-nant" of a quadratic polynomial. The number of real root are determined by the sign of the discriminant. (see Table 1.) このようにやっています この後の書き方、途中の箇所の修正をお願いします 一応途中まで終わらせてから\end{document}を入れ、実行したのですが エラーが出てしまいました(始めたばかりのペーペーなので、あまりよく出来ないのです) 明日が提出の期限なので、よろしくお願い致します…

  • 訳をお願いいたします。

    長文を勉強しているのですが、There's room for secrecy in a sole proprietorship whether it's a matter of formula or process or a list of clients and as with any secrets, as you well know, the fewer who know, the less the risk of someone divulging the information.この文章の訳をお願いいたします。andで前後の文を分けるのだとは思うのですが、意味を拾っていけばますますわからなくなってしまいました。as withとは、この場合、as is often the case withの略だと考えても良いのでしょうか?教えていただきたいと思います。

  • 2次方程式について教えてください。(問題文は英語です)

    以下の2つの問題について教えてください。 できれば、問題文の英訳もして頂けると幸いです。 1.When the principle of zero products is used to solve a quadratic equation, will there always be two solutions? Why or why not? 2.What is wrong with solving x^2 = 3x by dividing both sides of the equation by x^2?

  • 物理化学の問題ですが、和訳できなくて・・・

    和訳よろしくお願い致します。 The environmental lapse rate dT/dz characterize the local variation of temperature with elevation in the earth's atmosphere. Atmosphere pressure varies with elevation according to the hydrostatic formula, dT/dz=-Mρg where M is molar mass, ρ is molar density, and g is the local acceleration of gravity.Assume that the atmosphere is an ideal gas,with T related to P by the polytropic formula,Eq.(3.35c). Develop an expression for the environmental lapse rate in relation to M,g,R,and δ.

  • これの和訳を教えてください。

    In this and subsequent papers we will study worken Keplerian particles in the framework of the plane circular Restricted Three-Body problem ( the plane circular RTB problem). The aim of the present paper is to represent, for example, the collisional rate by means of the numerical solutions to the plane circular RTB problem for special cases and to compare the result with that deduced from the formula in a free space.

  • 訳お願いします!

    訳お願いしますm(._.)m (1)By 2004, Samso was already 70% self-supplied by renewable energy. (2)The wind generators supplied energy for electricity, and solar panels and biomass stoves for heating. (3)In addition to tourists, researchers and students of environmental studies visit the island. (4)They attend the seminars at the Energy Academy or visit the eco-museum on the island. (5)The Energy Academy itself is built according to the principles of an ecological building. (6)The use of water is cut down to a minimum and rainwater is used for flushing toilets. (7)The building is heated by solar collectors and a district heating system that burns straw. (8)Slar cells on the roof and local wind turbines supply the building with electricity. (9)Low-energy electrical appliances and lighting are used throughout the building. (10)Windows in the building are designed to provide the best lighting conditions.

  • この文章の和訳を教えてください。

    It should be noticed that Λ_f is independent of both ei~ and R. In order to compare Λ_K with Λ_f clearly, we consider the ratio of these, that is, γ=Λ_K/Λ_f=3.0C_K(R/1AU)^1/2, (4・9) which is independent of the mass of the planet. The values of γare listed in Table I as well as those of C_K. As the parameter C_K is approximately proportional to R^-1/2 (see Fig.11), γ is almost independent of R and is 2.3 for ei~=0 and 1.4 for ei~=4. This indicates that, though the result is obtained in the limited framework of the two-dimensional particle motion, the collisional rate of Keplerian particles is enhanced by a factor of about 2.3 or 1.4 compared to that estimated in a free space formula, as long as we are concerned with the two cases of eccentricity. Furthermore, as seen from Table I, γ for the case ei~=4 is significantly smaller than that of the case ei~=0. This seems to confirm the conjecture that γ tends to unity in the high energy limit (i.e., ei~→∞), or in other words, the free space formula is right only in the high energy limit. お手数ではございますが、どうかよろしくお願いいたします。

  • 和訳をお願いします。

    The term crusade is derived from a Middle Latin cruxata, cruciata. The adjective cruciatus had been used in the sense of "marked with a cross" from the 12th century; cruciatus (also cruxatus, croxatus, crucesignatus) was used of crusaders by the mid 13th century, from their practice of attaching a cloth cross symbol to their clothing. Use of cruxata (cruciata) for "crusade, military expedition against enemies of the church" is in use by the 1280s. The French form croisade and Spanish cruzada are recorded by the 16th century. The French form of the word first appears in its historiographical sense in the 17th century[3] and it was adopted into English and German in the 18th century. The Crusades in the Holy Land are traditionally counted as nine distinct campaigns, numbered from the First Crusade of 1095–99 to the Ninth Crusade of 1271/2. This convention is used by Charles Mills in his History of the Crusades for the Recovery and Possession of the Holy Land (1820), and is often retained for convenience, even though it is somewhat arbitrary: The Fifth and Sixth Crusades led by Frederick II may be considered a single campaign, as can the Eight Crusade and Ninth Crusade led by Louis IX.

  • 和訳をお願いします。

    The term crusade is derived from a Middle Latin cruxata, cruciata. The adjective cruciatus had been used in the sense of "marked with a cross" from the 12th century; cruciatus (also cruxatus, croxatus, crucesignatus) was used of crusaders by the mid 13th century, from their practice of attaching a cloth cross symbol to their clothing. Use of cruxata (cruciata) for "crusade, military expedition against enemies of the church" is in use by the 1280s. The French form croisade and Spanish cruzada are recorded by the 16th century. The French form of the word first appears in its historiographical sense in the 17th century[3] and it was adopted into English and German in the 18th century. The Crusades in the Holy Land are traditionally counted as nine distinct campaigns, numbered from the First Crusade of 1095–99 to the Ninth Crusade of 1271/2. This convention is used by Charles Mills in his History of the Crusades for the Recovery and Possession of the Holy Land (1820), and is often retained for convenience, even though it is somewhat arbitrary: The Fifth and Sixth Crusades led by Frederick II may be considered a single campaign, as can the Eight Crusade and Ninth Crusade led by Louis IX.