• ベストアンサー

隣接3項間漸化式

下記の漸化式の示し方がわかりません α=(3+√5)/2 とし、数列a[n]を a[n] = α^n +1/α^n と定めるとき a[n+2] = 3a[n+1] - a[n]  が成り立つことを示せ。 を教えてください。よろしくお願いします。

質問者が選んだベストアンサー

  • ベストアンサー
  • spring135
  • ベストアンサー率44% (1487/3332)
回答No.4

a[n] = α^n +1/α^n=[(3+√5)/2]^n+[1/(3+√5)/2]^n 1/[(3+√5)/2]=2/(3+√5)=(3-√5)/2 よって a[n]=[(3+√5)/2]^n+[(3-√5)/2]^n (1) a[n+1]=[(3+√5)/2]^(n+1)+[(3-√5)/2]^(n+1)  (2) a[n+2]=[(3+√5)/2]^(n+2)+[(3-√5)/2]^(n+2)   (3) (1),(2)より 3a[n+1]-a[n]=3[[(3+√5)/2]^(n+1)+[(3-√5)/2]^(n+1)]-[[(3+√5)/2]^n+[(3-√5)/2]^n] =[(3+√5)/2]^n*[3*(3+√5)/2-1)]+[(3-√5)/2]^n*[3*(3-√5)/2-1)] 3*(3+√5)/2-1=(7+3√5)/2=(3+√5)/2)^2 確認すること 3*(3-√5)/2-1=(7-3√5)/2=(3-√5)/2)^2   確認すること 故に 3a[n+1]-a[n]=[(3+√5)/2]^(n+2)+[(3-√5)/2]^(n+2) =a(n+2)

ponmitsu
質問者

お礼

ありがとうございます。とてもわかりやすかったです。 すっきりしました。

その他の回答 (3)

回答No.3

いらいらするな。。。。。。。w   この程度は、あっさり解いてくれよ。 α=(3+√5)/2 → 2α=(3+√5)→ 2α-3=√5 2乗すると α^2-3α+1=0. α≠0から割ると、α+1/α=3 と言う事。

ponmitsu
質問者

補足

a[1] =3 ということですよね。 それからどうすればいいのでしょうか?

  • Tacosan
  • ベストアンサー率23% (3656/15482)
回答No.2

「何の」右辺を変形することを考えているのでしょうか?

ponmitsu
質問者

補足

a[n+2] = 3a[n+1] - a[n] の部分の右辺です。

  • Tacosan
  • ベストアンサー率23% (3656/15482)
回答No.1

たぶん, α が満たす 2次方程式を考えるといいんじゃないかな.

ponmitsu
質問者

補足

右辺を変形して、2次方程式の形にするということでしょうか?

関連するQ&A

  • だれか隣接3項間漸化式について教えてください。

    中年男性です。いま数列の勉強をしています。「なるほど高校数学 数列の物語」という読本を 読んでいるのですが、手に負えないので質問させてもらいました。  漸化式  A1=2, A2=3, An+2=5An+1-6An    n>=1 ・・・(1)  を満たす数列が特性方程式X^2=5X-6の解 X=2、X=3 から 2^n-1 と3^n-1に なることは実際に確かめて確認して納得したのですが、続くくだりから判らなくなって しまいました。  そのくだりとは“そこで次に問題となるのが、上記のような等比数列以外にこの  漸化式を満たす数列があるのか、ということです。  結論からいうと、特性方程式が異なる2つの解をもつときは、特性方程式の解を  公比とする等比数列の組み合わせを考えるだけで十分です。このことは次の  ようにして判ります・・・” と書いてあり特性方程式の解以外にないことの証明が始まるものと期待して読み進めたの ですが、漸化式の変形が始まり結局    An+1-2An=(A2-2A1)3^n-1    n>=1  ・・・(2)    An+1-3An=(A2-3A1)2^n-1    n>=1  ・・・(3)  という式になり、(2)式から(3)式を引くことで、    An=(A2-2A1)3^n-1-(A2-3A1)2^n-1     n>=1  となり、条件A1=2、A2=3を代入して一般項は    An=-1×3^n-1+3×2^n-1     n>=1 ・・・(4)  となりました。  これで特性方程式の解から導かれる数列以外に解がないことの  証明になるのでしょうか。また数列2^n-1や数列3^n-1が漸化式を  満たすことはすでにnに1、2、3・・・と代入して確認したのですが  一般項が(4)式であるということはどういうことなのでしょうか。  (4)式にnに1、2、3・・・と代入して確認していませんが(成立するのでしょうが)  このあたりの事情がよく判りません。  どなたか解説して戴けないでしょうか。

  • 2項間漸化式の問題

    はじめまして。 数列a(n)が漸化式 a(n)=1 a(n+1)=a(n)-3・2^(n-1)-2 によって定められているときにa(n)はどのように求まるでしょうか? 解法を教えてください

  • 数列 漸化式

    A(n+1)=2A(n)+n (初項A(1)=1) という数列があるとします。 この一般項の形を求めるのに、この漸化式を満たす数列{B(n)}=αn+βを設定して、 この漸化式に代入、恒等式から{B(n)=-n-1}がわかります。 この{B(n)}の式が最初の漸化式を満たすわけですから、 A(n+1)=2A(n)+n B(n+1)=2B(n)+nの両辺を引いて A(n+1)-B(n+1)=2(A(n)-B(n))という等比数列が成り立つので、 A(n)=3*(2のn-1乗)-n-1   となると思うのですが、 ここから質問です。 なぜ最初の漸化式を満たした、B(n)=-n-1 と これまた漸化式を満たしている、A(n)=3*(2のn-1乗)-n-1 が異なっているのでしょうか? 回答お願いいたします。

  • 漸化式(隣接2項間)の問題

    漸化式の問題の解き方についての質問です。 a_1=1,a_a+1=a_n+3 という問題なのですが自分はいつもこのタイプの問題は与式をα=α+3とおいて~として解いているのですがこの式の場合αと置いたら0になってしまって解き方がわかりません。 階差数列を利用するのかなぁとも思ったのですが不安なので質問させていただきました。

  • 3項間漸化式

    3項間漸化式 a(1)=1,a(2)=2,3a(n+2)-4a(n+1)+a(n)=0(n=1,2,3,...)で定義される数列を{a(n)}とするとき、次の問いに答えよ 壱,a(n+2)=a(n+1)+2a(n)をa(n+2)-αa(n+1)=β<a(n+1)-αa(n)>と変形するとき、係数α,βの値を求めよ 弐,a(n)をnの式で表せ という問題で、(1)は出来たのですが、(2)の途中からがわかりません。 壱は、α=-1,β=2 , α=2,β=-1 が答えになります 弐 α=-1,β=2とすると、 a(n+2)+a(n+1)=2<a(n+1)+a(n)> a(2)+a(1)=2 ←この部分が何故こうなるかがわかりません。 以下略 右辺の<>の部分で左辺を割ったのですか・・・? 形が似ているからなんとなく、そう思うのですが、不安です。 そもそも、a(1)=1,a(2)=2 だから、これって成り立たないのではないのですか? 教えてください。

  • 2項間漸化式のある解き方で悩んでいます。

    【問】 A(1)=1,A(n+1)=2A(n)+n+1 (n≧1) で定まる数列{A(n)}の一般項を求めよ。 このパターンの問題の解き方を塾で習いました。 A(n+2)の式を作ってA(n+1)の式を引くというやり方なのですが、自分でやってみたところうまくいかないので、間違っている点を指摘してください。 A(n+2)=2A(n+1)+n+2 から A(n+1)=2A(n)+n+1 を引くと A(n+2)-A(n+1)=2{A(n+1)-A(n)}+1 となり、 ここで、A(n+1)-A(n)=B(n) とおくと、上の式は、 B(n+1)=2B(n)+1 と表せる。 B(1)=2+1+1-1=3 なので、 B(n)=3・2^(n-1)-1 となる。よって、 A(n+1)-A(n)=3・2^(n-1)-1 である。 A(n+1)-A(n)=3・2^(n-1)-1 から A(n+1)-2A(n)=n+1 をひくと、 A(n)=3・2^(n-1)-n-2 となる。 と解いてみたのですが、正解は、 A(n)=2^(n+1)-n-2 なのです。 どこが間違っているのでしょうか?? なんかB(n)の漸化式を解くところから違ってきてる気はするのですが。 よろしくお願いします。 

  • 漸化式の問題

     漸化式の単元の問題でわからないものがあるので教えてください。問題は「数列{a_n}が次の漸化式を満たすとき、{a_n}の一般項を求めよ。 a_1=2 , a_n+1=2a_n+2n+1(n=1,2,3...)」というものです。  どなたか解法を教えて下さいませんか?よろしくお願い致します。

  • 漸化式

    第n番目の数列をa(n)とします。 次の漸化式を求めよ。 a(1)=0として、 a(n+1)+a(n)=2のn乗 ちなみに、この数列は0、2、2、6、10、22、のようになります。 わかる方宜しくお願いします。 解法のポイントなども教えていただければ助かります。特に勘違いしやすいところとか。

  • 一般の隣接3項間の漸化式

    一般の隣接3項間の漸化式について、 px^2+qx+r=0 の二つの解α,βを用いて a[n+2]-αa[n+1]=β(a[n+1]-αa[n]) の形に変形できる。 これは、深く突っ込んで、学習しなくていいのでしょうか? しっていたほうがいいのでしょうか?

  • 漸化式(隣接2項間)・a_n+1=pa_n+q

    漸化式(隣接2項間)の問題・a_n+1=pa_n+q 隣接2項間の漸化式の問題で 例)α=-1より、a_(n+1)+1=3(a_n+1) これがなぜ「数列(a_n+1)が、初項a_1+1=2,公比3の等比数列であることを表している」のでしょうか? どなたかわかりやすくお願いします。