• 締切済み

数学について質問です

E(x)=(a+b)∫[0→x] yf(y)dyがdE(x)/dx=(a+b)xf(x) ということはE(x)=∫[0→x] f(y)dyのdE(x)/dxはdE(x)/dx=f(x)でいいんでしょうか?

みんなの回答

回答No.2

いいんです(連続関数の場合)。

  • alice_44
  • ベストアンサー率44% (2109/4759)
回答No.1

よいです。

関連するQ&A

  • 数学についての質問です。

    2つのグラフ X+5y=19 と x+5=y^2 間の面積を求めよという問題で。 ∫[a,b]f(x)dx + ∫[b,c]g(x)dx (a<b<c) の形にして問題を解いていたのですが、 ∫[-5,4]f(x)dx + ∫[4,59]g(x)dx f(x)=sqrt(x+5)-(-sqrt(x+5))までできたのですが、g(x)の式の出し方がわかりません。 また、 ∫[-8,3](-y^2-5y+24)dyの形にして、解いてみて出た答えが、575/6だったのですが上記が解けないので確かめることができません。

  • 保存力とポテンシャルの問題

    物理の問題です。 r=√x^2+y^2 F=(Fx,Fy)として、 Fx=xf(r)、Fy=yf(r) (ただし、f(r)ある関数) で与えられるとき、この力は保存力かどうかを答え、保存力の場合をそれを与えるポテンシャルをf(r)から求めるのですが、僕のやったかかぎり、保存力とはわかったのですが(そもそもここが間違ってたらいってください)、ポテンシャルが求められません。積分が残り、U(r)=-∮xf(r)dxまたは-∮yf(r)dyでとまりました。 これはどう解けるのでしょうか?

  • 積分順序の交換の際の書き方について

    積分順序の交換の問題。 ∫[x=0,1]dx∫[y=ax,bx]f(x,y)dyを変形した場合、正しい書き方は次のどちらでしょうか? i)∫[y=0,b]dy∫[x=y/b,1]f(x,y)dx-∫[y=0.a]dy∫[x=y/a,1]f(x,y)dx ii)∫[y=ax,bx]dy∫[x=y/a,y/b]f(x,y)dx 勿論どちらも間違っている可能性もありますが。 順序の交換の問題で減算ってアリですか?

  • ∫ e^(2x) x dx

    問題) Solve (1/x) dy/dx = e^(2x) cos^(2) y    模範途中式)∴ dy/dx = x  e^(2x) cos^(2) y ∴ ∫ 1/ (cos^2 y) dy = ∫ x e^(2x) dx    *     ∴ ∫ sec ^(2) y   dy = ∫ x e^(2x) dx ∴ tan y = x (½ e^(2x) ) - ∫(½ e^(2x) ) dx +   と続いていきます。 今回お聞きしたいのは ∴ ∫ 1/ (cos^2 y) dy = ∫ x e^(2x) dx   * なのですが、これは ∴ ∫ 1/ (cos^2 y) dy = ∫ e^(2x) x dx  としては間違いですか? ∫ u (dv/dx) dx = uv - ∫ v (du/dx) dx ← この公式を使って解いていく為には順番は重要になります。 ∫ e^(2x) x dx で解いていくと答えも違ってしまいます。 私はA x B =AB 、B X A = BA で同じ事だと考えてしまいます。 ∫ e^(2x) x dx ← この様な時、e を後ろにもってきて∫ x e^(2x) dx と書かないといけない、という決まりでもあるのでしょうか? 教えて下さい。

  • (d/dx)∫(a~b)f(x,y)dy=∫(a~b)(d/dx)f(x,y)dyの成立条件

    (d/dx)∫(a~b)f(x,y)dy(つまり、f(x,y)をyで積分(定積分)したものをxで微分したもの)を考えます(ただし、(a~b)は積分範囲を表し、aやbは定数であって、xの関数ではありません)。 これは多くの場合、∫(a~b)(d/dx)f(x,y)dy(つまり、f(x,y)を先にxで微分してからyで積分したもの)と等しくなります。しかし、まれに一致しない場合があります。例としては、f(x,y)=(sin xy)/y (x>0)の場合が挙げられます。 そこで、 (d/dx)∫(a~b)f(x,y)dy=∫(a~b)(d/dx)f(x,y)dy が成立するための必要十分条件を教えていただきたいと思っています。 もし簡単には述べられない条件でしたら、何のどこを参照すればこのことが論じられているのかを具体的にご教示いただけると幸いです。

  • 微分方程式の質問です。

    f(y)をyの関数、z=f(y)とおくと f ' (y) dy/dx + f(y)P(x) = Q(x) の式は、 dz/dx + zP(x) = Q(x) と書ける。これを利用して、 dy/dx = (e^-y)(1-x)+1 の一般解を求める問題なのですが、解法が分かりません。 よろしければ教えて頂けないでしょうか。 よろしくお願い致します。

  • 数学 重積分

    (1) ∫(0→2)∫(y/2→y) e^(x+y) dx dy (2) ∬√(1-x^2)dx dy D:x^2+y^2≦1 x≧1 y≧1 この2つの問題の解き方を教えて下さい

  • dx を変数として扱える理由

    高校の数学では、微分を次のように習いました。 y=f(x) ...f(x)はxの関数 yをxで微分することを次のように書く。 dy/dx=df(x)/dx 例えば y=f(x)=x^2+3x+4 なら dy/dx=2x+3 高校の授業で数学の先生の漏らした言葉に、 dx は、ひとつの変数と扱って計算してよい。 とすると dy=(2x+3)dx と書ける。 ここで積分の魔法をかけると ∫dy=∫(2x+3)dx y+A=x^2+3x+B (A,Bは定数) なんと、これはA,Bを B-A=4とすれば 最初のf(x)と一致してます。 このようなめちゃくちゃな話をそのまま信じるのも あれなので、こんな計算が許される理由を教えてください。

  • 逆関数を利用した定積分の計算

    参考書の模範回答を読んでも分からなかったので質問します。 f(x)=log[{-1+√(1+4x)}/2]とおき、関数y=f(x)(x≧2)とその逆関数y=g(x)(x≧0)について考える 問1:g(x)をxの式で表せ 問2:a≧2のとき、∫[2,a]f(x)dx=af(a)=∫[0,f(a)]g(x)dxを示せ 問1は分かりました。 g(x)=e^(2x)+e^x(x)(x≧0) 問2について(模範回答より) y=f(x)に対し、x=g(y)であるからdx=g'(y)dy f(x)はx≧2に於いて増加関数である。 a≧2のとき、xとyの対応は次のようになる x:2 --> a y:0 --> f(a) ∫[2,a]f(x)dx = ∫[0,f(a)]y*g'(y)dy = [y*g(y)]_|y=0,f(a)|-∫[0,f(a)]g(y)dy = f(a)*g(f(a))-∫[0,f(a)]g(y)dy ・・・(1) = a*f(a)-∫[0,f(a)]g(x)dx ・・・(2) なぜ(1)から(2)が導かれるのか教えてください。 (1)の∫[0,f(a)]g(y)dyが(2)の∫[0,f(a)]g(x)dxになるのは おそらく「定積分は、関数の形と上端、下端の値で決まり、変数に取った文字には無関係」、つまり 「∫[a,b]f(x)dx = ∫[a,b]f(t)dt」から導かれるのでしょうが(間違っていたら指摘してください)、 (1)のf(a)*g(f(a))が(2)のa*f(a)になるのが理解できません。 おねがいします。

  • 関数

    関数 y=f(x)とx=f(y)は関数として、等しいというのは合っていますか? また、(1)f(x)=e^x/(e^x+1)のときy=f(x)の逆関数y=g(x)を求めよ。 (2)(1)のf(x)、g(x)に対し、 (A)∫(a~b)f(x)dx+∫(f(a)~f(b))g(x)dx=bf(b)-af(a)をしめせ。 (解答) f(x)の値域は、0<y<1{(e^x)+1}y=e^x (1-y)e^x=y⇔x=log(y/1-y) xとyを入れ替えて、g(x)=log(x/1-x) (2)I=∫(f(a)~f(b))g(x)dxとする。 f(x)はg(x)の逆関数だから、y=g(x)より、x=f(y) dx=f‘(y)dy また、g(f(a))=a,g(f(b))=bとあるのですが、 これらは、y=g(x)とx=f(y)を合成したものだ、としても、本質的には、問題ないですよね