「p(x)ならばq(x)」が成り立つとき、Aである。Aの定義について質問。

このQ&Aのポイント
  • 集合Uから集合Vへの写像fについて、x1,x2を集合Uを変域とする変数として「f(x1)=f(x2)ならばx1=x2」を満たすときfはUからVの単射である。
  • 「f(x1)=f(x2)ならばx1=x2」が真であるということと、「成り立つ」こととの関係について疑問があります。
  • 真理値表の真偽と「成り立つ」ことも関係ないのでしょうか?
回答を見る
  • ベストアンサー

混乱してます。

「p(x)ならばq(x)」が成り立つとき、Aである。 ようなAの定義について質問です。 例えば単射の定義は、 集合Uから集合Vへの写像fについて、x1,x2を集合Uを変域とする変数として 「f(x1)=f(x2)ならばx1=x2」 を満たすときfはUからVの単射である。 ですが、『「f(x1)=f(x2)ならばx1=x2」を満たすとき』と言うのは、 「f(x1)=f(x2)ならばx1=x2」が真であるということなのでしょうか? 簡単にするため p;f(x1)=f(x2) q;x1=x2 と置くと、 真理値表は p ¬p q ¬p∨q F T T T F T F T T F T T T F F F となりますが、しっくりきません。 「成り立つ」ことと、真理値表の真偽は関係ないのでしょうか? 宜しくお願いします。

  • sfsf4
  • お礼率74% (129/173)

質問者が選んだベストアンサー

  • ベストアンサー
  • koko_u_u
  • ベストアンサー率18% (216/1139)
回答No.1

>『「f(x1)=f(x2)ならばx1=x2」を満たすとき』と言うのは、 >「f(x1)=f(x2)ならばx1=x2」が真であるということなのでしょうか? そうです。 > 「成り立つ」ことと、真理値表の真偽は関係ないのでしょうか? いいえ。 つまり、今書いた真理値表の最初の 3パターンのいずれかが成立している、ということに他なりません。 もちろん、「写像である」という条件から除外されるケースもあるでしょう。

関連するQ&A

  • 単射の定義

    基本的な質問です. 数学の本のいくつかの本に単射の定義が出ていました. 集合GとG'の間に写像fがあり,Gの点x,yのそれぞれ写像の点,x',y'があるときx≠yであるとき,x'≠y'であるとき単射であるという. この定義には,写像fが一価であることを定義の要件として必ずしも明示されていない(一価であるのならばこのような定義は入らない)ようなので,次のように考えた場合矛盾があるでしょうか.いいかえれば,単射の定義としては,x≠yであるとき,x'≠y'であるだけでなく,逆のx'≠y'であるときx≠yの条件も併せてつけるべきではないでしょうか. Gの点xに対して,x1',x2'が,yに対して,y1',y2'に対応し,x≠yであるとき,x1',x2y1',y2'がいずれも異なる場合の写像は,上の定義だと単射といえるのではないでしょうか

  • 逆写像の条件について

    集合Uから集合Vへの写像fが全単射なら 逆写像f^{-1}が存在し、f^{-1}は全域写像になりますが、 f^{-1}の逆対応はfなので、f^{-1}は全単射で、 fは全域写像になるのでしょうか? また、集合Uから集合Vへの部分写像fが逆写像をとる条件を単射とした場合は 合成写像f◦f^{-1}がUの恒等写像にならないですよね?

  • 線形空間の同型について

     p、qを実数とし、R^5の線形部分空間V、Wを  V={t(x1 x2 x3 x4 x5) |     2x1+(q-2)x2-4x3-(p+3)x4+2x5=0          (p+1)x2+2qx3+(p+1)x4+qx5=0,      6x1+(p+3q-5)x2+(q-12)x3-(2p+8)x4+(q+6)x5=0} W={t(x1 x2 x3 x4 x5) |     2x1+(p+q-1)x2+(q-4)x3-2x4+(q+2)x5=0,         p(p+1)x2+qx3+p(p+1)x4+p(p+1)x5=0} と定義します。このとき、V、Wが線形空間として同型となるための、p、qに関する必要十分条件を求めたいのですが、どのようにして考えていけばよいのでしょうか?  一応同型の定義等は知っています。定義通り考えるのであれば、V、Wに関する同型写像を考えればよいと思うのですが、この場合、適当にそのような写像を考えればよいのでしょうか?正直お手上げ状態です。どなたかご教授お願いします。よろしくお願いします。  

  • 濃度の問についてご教授願います。

    (1)は途中まで解いてみました。(2)(3)はどのように証明してゆけばよいのでしょうか?お願いいたします。                              問題  集合Xの濃度を♯Xであらわす。特に、空集合φに対しては、♯φ=0であり、一元集合{φ}に対しては、♯{φ}=1である。集合Xから集合Yへの写像全体の集合をY^Xと表す。 更に、濃度のべき乗〖(♯Y)〗^(♯X)を♯〖(Y〗^X)と定義する。以下の問いに答えよ。 (1)♯X_1=♯X_2かつ♯Y_1=♯Y_2ならば、〖(♯Y₁)〗^(♯X₁)=〖(♯Y₂)〗^(♯X₂)を証明せよ。 (2)0^(♯X)を求めよ。 (3)特に、0⁰を求めよ。 <解答> (1)♯X_1=♯X_2より、fという全単射が存在。♯Y_1=♯Y_2より、gという全単射が存在。(仮定より) また、〖(♯Y₁)〗^(♯X₁)よりhという写像がおける。〖(♯Y₂)〗^(♯X₂)より、iという写像がおける。(示すべきものより)  これより、 Φ:〖(♯Y₁)〗^(♯X₁)→〖(♯Y₂)〗^(♯X₂)  が全単射であることを言えばよいと分るのですが、「全射をどのようにして、定義にもちこむか、単射をどのようにして、定義にもちこむか」が不明です。お願いします。  (※h=g⁻¹◦i◦f、i=(g)◦h◦f⁻¹と表せますが、何か使えますでしょうか)

  • 線形写像における単射性

    「すべての対称式がこの二つの対称式の多項式としてただ一通りに表せる」ということの証明が教科書に載っているのですが、その証明で分からない部分があります。 定理:二変数の多項式環C(u,v)から対称式をなす環S(x,y)への写像φを次のように決める。 φ(f(u,v))=f(x+y,xy) するとこの写像φは全単射写像になる。 この定理において写像φが単射であることの証明がよくわかりません。 φ(f(u,v))=0ならf(u,v)であることを示したあと、  φ(f(u,v))=φ(g(u,v)) →φ(f(u,v))-φ(g(u,v))=0 →φ(f(u,v)-g(u,v))=0 →f(u,v)-g(u,v)=0 ∴f(u,v)=g(u,v) となって単射性がわかると教科書に書いてあるのですが、これでなぜ単射性がわかるのでしょうか?教科書やインターネットで調べたのですがわかりませんでした。 わかる人がいれば詳しく教えてください。よろしくお願いします。

  • 位相空間についての質問です。

    位相空間(T,Ot)(Tは集合でOtは位相)として、a,b,cはTの元とします。 連続写像φ:[0,1]→T、φ(0)=a、φ(1)=bが存在して、 連続写像ψ:[0,1]→T、ψ(0)=b、ψ(1)=cが存在するとします。 このとき、連続写像g:[0,1]→T、g(0)=a、g(1)=cは存在するのでしょうか? もし存在するなら証明してほしいです。 自分の持ってる教科書の連続写像の定義は、 f:(T,Ot)→(S,Os)が点a∈Tで連続。 ⇔f(a)∈Uとなる任意のU∈Osに対して、あるV∈Ot,a∈Vが存在して、f(V)Uとなる。 と定めています。 一応、自分で考えたのは、 g:[0,1]→T、g(x)=φ(2x)(0≦x≦1/2)、g(x)=ψ(2x−1)(1/2≦x≦1)なのですが、x=1/2で連続なのかわかりません。g:[0,1/2]→T, g:[1/2,1]→Tは連続だと思います。 g(1/2)∈Uとなる開集合U⊂Tを任意に取ります。 g:[0,1/2]→Tの連続性から1/2∈V1、V1⊂[0,1/2] となる開集合が存在してg(V1)⊂Uで、 g:[1/2,1]→Tの連続性から1/2∈V2、V2⊂[1/2,1] となる開集合が存在してg(V2)⊂Uとなる事はわかります。 V1もV2も[0,1]の相対位相の元なので、V1UV2は、[0,1]の開集合となるのかわからないです。 (V1もV2も[0,1]の位相の元([0,1]の開集合)ならば、V1UV2は、[0,1]の開集合となる事はわかります。)

  • 集合、濃度の問題について教えてください。

     (1)は解決できました。(2)、(3)の考え方と解法がつかめません。よろしくお願いします。                                              問題  集合Xの濃度を♯Xであらわす。特に、空集合φに対しては、♯φ=0であり、一元集合{φ}に対しては、♯{φ}=1である。集合Xから集合Yへの写像全体の集合をY^Xと表す。 更に、濃度のべき乗〖(♯Y)〗^(♯X)を♯(Y^X)と定義する。以下の問いに答えよ。 (1)♯X_1=♯X_2かつ♯Y_1=♯Y_2ならば、〖(♯Y₁)〗^(♯X₁)=〖(♯Y₂)〗^(♯X₂)を証明せよ。 (2)0^(♯X)を求めよ。 (3)特に、0⁰を求めよ。 (2)について、0^(♯X)は、問題文の定義より、♯(Φ^X)と書き表せます。 ただ、∮;X→Φという写像の全射かつ単射を示すにはどうすればよいでしょうか? また、どのような答えにいきつくのでしょうか? (3)については、0しか含まない集合Zから0しか含まない集合Wという写像kを考えて、全単射がわかるという形で大丈夫でしょうか? ※(1)は以下のようになりました。  ♯X_1=♯X_2より、fという全単射(f;X₁→X₂)が存在。   ♯Y_1=♯Y_2より、gという全単射(g;Y₁→Y₂)が存在。(仮定より)  ゆえに Φ:(Y₁)^(X₁)→(Y₂)^(X₂) と置き、全単射が存在すればいい。  Φが全単射で示された。

  • 写像の問題について

    (1)a,b,cを実数とする。写像ψ:R→Rをψ(x)=x^3+ax^2+bx+cで定義する。このとき、写像ψが単射になる必要十分条件を求めよ。 (2)連続な写像f:(-1,1)→(-1,1)で不動点を持たないものの例を具体的に作れ。 (3)連続な写像ψ:R^2→R^2で、不動点を持たないものの例を具体的に作れ。 (1)については、単射はp≠qのときψ(p)≠ψ(q)を示せばいいのかなと思ったのですが、必要十分条件をどのように答えていいのかわかりません。 (2)(3)については、問題の意味がわかりません。 わかる方、よろしくお願いします。

  • 「 f を集合 X から 位相空間(Y、U)への全射とするとき、以下を

    「 f を集合 X から 位相空間(Y、U)への全射とするとき、以下を示せ。 1.T={ f^-1(u)|uはUに含まれる}とおくとき、TはX上の位相である。 2.Tは f を(X、T)から(Y、U)への連続写像とするX上の最小の位相である。」 という問題についての質問です。 まず、1番は 位相の三つの条件を一つずつチェックして行けば良いので、大体はわかったのですが、 最も基本的な条件である、「Tが空集合とX自身を含む」というのが示せませんでした。これはどのようにして示すのでしょうか? それから、2番について、連続写像であることは f の定義の仕方から明らかだと思うのですが、 「最小の位相である」という部分はどのようにして示せばよいのでしょうか? よろしくお願いします。

  • p⇒q=(¬p)∨qについて

    p⇒qは理解できるのですが(真理表も)、なぜこの定義が(¬p)∨qなのかさっぱりわかりません。 真理集合も違うのではないかとも思います。 よろしくおねがいします。