• 締切済み

単射の定義

基本的な質問です. 数学の本のいくつかの本に単射の定義が出ていました. 集合GとG'の間に写像fがあり,Gの点x,yのそれぞれ写像の点,x',y'があるときx≠yであるとき,x'≠y'であるとき単射であるという. この定義には,写像fが一価であることを定義の要件として必ずしも明示されていない(一価であるのならばこのような定義は入らない)ようなので,次のように考えた場合矛盾があるでしょうか.いいかえれば,単射の定義としては,x≠yであるとき,x'≠y'であるだけでなく,逆のx'≠y'であるときx≠yの条件も併せてつけるべきではないでしょうか. Gの点xに対して,x1',x2'が,yに対して,y1',y2'に対応し,x≠yであるとき,x1',x2y1',y2'がいずれも異なる場合の写像は,上の定義だと単射といえるのではないでしょうか

noname#178429
noname#178429

みんなの回答

noname#221368
noname#221368
回答No.2

>写像fが一価・・・ の一価ですが、多価関数との対比で「一価」と仰ってますか?。もしもそうなら、写像が一価関数である事は、写像の定義に含まれるので、「逆のx'≠y'であるときx≠y」は自然に成り立ちます。  多価関数という用語はどちらかと言うと、慣習または実用的用語で、多価関数は本来、(多価)対応と呼ぶのが本当だと思います。

noname#178429
質問者

お礼

有り難うございました. 写像は必ずしも1対1の対応ではないと思っています.

回答No.1

写像の定義を書いてみると多分疑問は解決します。

noname#178429
質問者

お礼

有り難うございました. 写像は必ずしも一価とは限らないと思っています.そうでなければ単射の定義は必要ありません.

関連するQ&A

  • 濃度の問についてご教授願います。

    (1)は途中まで解いてみました。(2)(3)はどのように証明してゆけばよいのでしょうか?お願いいたします。                              問題  集合Xの濃度を♯Xであらわす。特に、空集合φに対しては、♯φ=0であり、一元集合{φ}に対しては、♯{φ}=1である。集合Xから集合Yへの写像全体の集合をY^Xと表す。 更に、濃度のべき乗〖(♯Y)〗^(♯X)を♯〖(Y〗^X)と定義する。以下の問いに答えよ。 (1)♯X_1=♯X_2かつ♯Y_1=♯Y_2ならば、〖(♯Y₁)〗^(♯X₁)=〖(♯Y₂)〗^(♯X₂)を証明せよ。 (2)0^(♯X)を求めよ。 (3)特に、0⁰を求めよ。 <解答> (1)♯X_1=♯X_2より、fという全単射が存在。♯Y_1=♯Y_2より、gという全単射が存在。(仮定より) また、〖(♯Y₁)〗^(♯X₁)よりhという写像がおける。〖(♯Y₂)〗^(♯X₂)より、iという写像がおける。(示すべきものより)  これより、 Φ:〖(♯Y₁)〗^(♯X₁)→〖(♯Y₂)〗^(♯X₂)  が全単射であることを言えばよいと分るのですが、「全射をどのようにして、定義にもちこむか、単射をどのようにして、定義にもちこむか」が不明です。お願いします。  (※h=g⁻¹◦i◦f、i=(g)◦h◦f⁻¹と表せますが、何か使えますでしょうか)

  • 写像の単射と全単射

    写像の定義に関して本で 単射: 任意のyに対して、xに関する方程式f(x)=yの解xが一意的 全射: 任意のyに対して、xに関する方程式f(x)=yの解xが存在 全単射: 任意のyに対して、xに関する方程式f(x)=yの解xが一意的に存在 という説明がありました。 単射であって全単射でない場合はあるのでしょうか?具体例を教えて いただければと思います。

  • 合成写像(元の定義域)

    集合XからYへの写像をf、集合YからZへの写像をgとする。 合成写像(f・g)(x)を考えるとき、Z⊂Xでなければならない理由がわかりません。 教えてください。 g(x)はYからZへの写像です。fはXからYへの写像ですから、Zはfの定義域(X)に含まれていなくてはならないのですが、Z⊆Xでもよい気がするのですがいかがでしょうか?

  • 集合、濃度の問題について教えてください。

     (1)は解決できました。(2)、(3)の考え方と解法がつかめません。よろしくお願いします。                                              問題  集合Xの濃度を♯Xであらわす。特に、空集合φに対しては、♯φ=0であり、一元集合{φ}に対しては、♯{φ}=1である。集合Xから集合Yへの写像全体の集合をY^Xと表す。 更に、濃度のべき乗〖(♯Y)〗^(♯X)を♯(Y^X)と定義する。以下の問いに答えよ。 (1)♯X_1=♯X_2かつ♯Y_1=♯Y_2ならば、〖(♯Y₁)〗^(♯X₁)=〖(♯Y₂)〗^(♯X₂)を証明せよ。 (2)0^(♯X)を求めよ。 (3)特に、0⁰を求めよ。 (2)について、0^(♯X)は、問題文の定義より、♯(Φ^X)と書き表せます。 ただ、∮;X→Φという写像の全射かつ単射を示すにはどうすればよいでしょうか? また、どのような答えにいきつくのでしょうか? (3)については、0しか含まない集合Zから0しか含まない集合Wという写像kを考えて、全単射がわかるという形で大丈夫でしょうか? ※(1)は以下のようになりました。  ♯X_1=♯X_2より、fという全単射(f;X₁→X₂)が存在。   ♯Y_1=♯Y_2より、gという全単射(g;Y₁→Y₂)が存在。(仮定より)  ゆえに Φ:(Y₁)^(X₁)→(Y₂)^(X₂) と置き、全単射が存在すればいい。  Φが全単射で示された。

  • 群環の一般的な定義とは?

    (R,+,・)を可換環(単位的環とは限らない),(G,*)を半群(一般的に群ではなく半群とする)とすると,GにはR左加群が定義できる。 次に,時,A≠φを集合とし単射f:G→Aに於いて, ☆:f(A)×f(A)→f(A)をf(x)☆f(y):=f(x*y)と定義し, ∀r,s,t∈R,∀f(x),f(y),f(z)∈f(G)に対して, (s・f(x))☆f(y)=s・(f(x)☆f(y))=f(x)☆(s・f(y))と定義する。 この時,(A,☆)はR上の多元環になる。 この時の(A,☆)をGのR上の群環と呼び,R[G]と書く。 と解釈したのですが某書に「R[G]は厳密にはGからRへの写像全体として定義される」 と載っていたのですがこれはどういう事でしょうか? R[G]の定義はR[G]:={f;Aは集合,f:G→Aは単射,多元環を満たす写像☆が存在する}とも解釈してみたのですが。。。

  • 幾何学の問題がわかりません。

    fを集合Xから集合Yへの写像、gを集合Yから集合Zへの写像とする。つぎを証明せよ。 1、fおよびgが単射ならばfとgの合成gfも単射である。 2、fおよびgが全射ならばfとgの合成gfも全射である。 3、|X|<_|Y|で||<_|Z|ならば|X|<_|Z|である。 この問題が分からないのですが教えて頂けないでしょうか。

  • f:X→Y, g:Y→Xを集合Xと集合Yの間の写像

    f:X→Y, g:Y→Xを集合Xと集合Yの間の写像とし、g⚪︎f:X→X、f⚪︎g:Y→Yをそれらの写像の合成写像とする。次の記述1から5について、 1:gが全射ならば、g⚪︎fは全射である。 2:g⚪︎fが全射ならば、fは全射である。 3:g⚪︎fが単射ならば、gは単射である。 4:Yが有限集合で、g⚪︎fとf⚪︎gが全射ならば、fは全単射である。 5:f⚪︎gが全単射ならば、g⚪︎fは全単射である。 常に正しいのは4であるそうですが、その理由がわかりません。どなたか教えて下さいませんか。

  • 写像と単射、全射に関する問題について質問です

    次の問題の解法がわかりません…誰か教えてください 写像f:X→Yに対してF:P(X)→P(Y)を F(B):=f^-1(B)と定義する。 このとき、fが全射⇔Fが単射 を示せ。

  • 線形写像における単射性

    「すべての対称式がこの二つの対称式の多項式としてただ一通りに表せる」ということの証明が教科書に載っているのですが、その証明で分からない部分があります。 定理:二変数の多項式環C(u,v)から対称式をなす環S(x,y)への写像φを次のように決める。 φ(f(u,v))=f(x+y,xy) するとこの写像φは全単射写像になる。 この定理において写像φが単射であることの証明がよくわかりません。 φ(f(u,v))=0ならf(u,v)であることを示したあと、  φ(f(u,v))=φ(g(u,v)) →φ(f(u,v))-φ(g(u,v))=0 →φ(f(u,v)-g(u,v))=0 →f(u,v)-g(u,v)=0 ∴f(u,v)=g(u,v) となって単射性がわかると教科書に書いてあるのですが、これでなぜ単射性がわかるのでしょうか?教科書やインターネットで調べたのですがわかりませんでした。 わかる人がいれば詳しく教えてください。よろしくお願いします。

  • 単射の証明

    「A→Bへの写像fに対して、 fが単射⇔g・f=idA となるBからAへの写像gが存在することを証明」 という問題なのですが、たぶん「 |f^-1(b)|≦1 」を使うと思うのですが... そこからどうすればいいか教えていただけないでしょうか。