• ベストアンサー
※ ChatGPTを利用し、要約された質問です(原文:満たすときと満たすようなについて)

行列Aが条件を満たす場合と満たさない場合の値を求める問題

ichiro_abeの回答

  • ベストアンサー
回答No.1

>p=4のとき,q=3 そしてpnot=4のときA=kE とありますが、ここがおかしいのではないかと思います。 pnot=4のときはA=kEとして、{(p-4)k-(q-3)}E=0となるので、 (p-4)k-(q-3)=0が条件になります。 あとは、A=kEより、p=2k、q=k^2を代入すれば、 (p,q)=(6,9),(2,1)が導かれます。

関連するQ&A

  • 行列の問題です!

    AをA^2=A-Eをみたす2次の正方行列としαを実数とする。このとき、次の問いに答えよ。ただし、Eは2次の単位行列である。 (1)行列Aの逆行列A^-1をAとEを用いて表せ。 (2)任意の2次正方行列Bに対して(B+αE)(B-pE)+qE=B^2-B+Eが成り立つとき、実数pとqをαを用いて表せ。 (3)行列M=A+αEの逆行列M^-1をA、E、αを用いて表せ。 (4)行列N=A^3-2A^2+3A+3Eの逆行列N^-1をAとEを用いて表せ。 (3)と(4)をお願いします><

  • 2つの問題の違い

    1.行列A=(a b)がA^2-A-2E=Oを満たしているとき,a+d,ad-bcの値を求めよ。 wwwwwww(c d) 2次の行列Aについて,A^2+pA+qE=Oを満たすp.qの値を求めよ. A=(2 5) ww(1 3) 教えてほしいところ 1番ではA=kEとなる可能性はあるが,2番ではA=kEになる可能性はないようです。 なぜ、1番では可能性があって、2番にないのか理解できません。 誰か両者の違いを含めて教えてください。

  • 数Cの逆行列について

    受験生なのですが、分からない問題があって困っています。 成分が全て実数である行列 A=(a b c d ) があり、a+d=-1,ad-bc=1 とし、E=(1 0 0 1) とする。 実数kの値によらずA-kEは逆行列をもつことを示せ。 です。お願いします。

  • 行列の二項定理を使った問題です。

    数Cの問題です。 わからなかったので、誰か教えてください。 二項定理の応用です。 (1)二次の正方行列Aが実数αに対し(A-αE)の二乗=0(零行列)を満たすとき、 任意の自然数nに対して Aのn+1乗=(n+1)αのn乗A-nαのn+1乗E が成り立つことを示せ。 ただし、Eは単位行列、0は零行列である。 (2)A=( 3 2 -2 -1)←二次の正方行列 のとき自然数nに対してAのn乗を求めよ。 ( 3 2 ) ↑ (-2 -1 ) 協力よろしくお願いします。

  • 固有値から行列式の値を求める問題です。

    実数を成分とする2次の正方行列Aに対して、Aの固有値が1と2であるとき|A^2 - 3A|の値を求めよ。 という問題の答えがわかりません。 |A-2E|=0 等と使って解くのかと思い色々試してみたのですが上手くいきません・・ご回答よろしくお願いします。

  • 行列の問題なのですが

    各成分が実数の2×2の正方行列と、p^2-4q<0を満たすp,qにおいて、B=A^2+pA+qEで定義される行列Bの逆行列がないならば、Bは零行列であることを示せ。 いろいろ考えたのですが、条件の有効な使い方が分かりません。どうすれば良いのでしょうか?

  • 数学 難な質問

    A=(a b c d)とする。A^2=Aとなるとき、a,b,c,dの満たすべき必要十分条件を求めよ。 行列Aについて、ハルミトン・ケーリーの定理から A^2-(a+d)A+(ad-bc)E=O すなわち、A^2=(a+d)A-(ad-bc)Eが成り立つ。 A^2=Aとなるとき (a+d)A-(ad-bc)E=A ゆえに{1-(a+d)}A+(ad-bc)E=O [1]a+d=1のとき (ad-bc)E=O よってad-bc=0 [2]a+dnot=1のときA=(ad-bc/a+d-1)E ゆえに,(ad-bc/1a+d-1)=とおくと A=kE これをA^2=Aに代入して整理すると k(k-1)E=O よってk(k-1)=0 ゆえにk=0,1 よってA=OまたはA=E A=Oのとき a=b=c=d=0 このとき,a+d=0となり,a+dnot=1を満たす。 A=Eのとき a=d=1,b=c=0 このとき,a+d=2となり,a+dnot=1を満たす。 [1],[2]から a+d=1,ad-bc=0;またはa=b=c=d=0;またはa=d=1,b=c=0 教えてほしいところ まず、僕の考え方を述べます。 A^2=Aのa,b,c,dの満たすべき必要十分条件を考えたい。 A^2=(a+d)A-(ad-bc)Eより、 A^2=A ⇔(a+d)A-(ad-bc)E=A ⇔{1-(a+d)}A+(ad-bc)E=O よって、{1-(a+d)}A+(ad-bc)E=Oの満たすべきa,b,c,dの必要十分条件をもとめればよい。 k、s、tを実数、Eを単位行列とする。 正方行列Aに対して sA+tE=O⇔s=t=0またはA=kEより、 s=t=0,またはA=kEとなるような、a,b,c,dの必要十分条件をもとめればよい。 よって[1]a+d=1のとき (ad-bc)E=O よってad-bc=0 [2]a+dnot=1のときA=(ad-bc/a+d-1)E ゆえに,(ad-bc/1a+d-1)=とおくと A=kE よって、a+dnot=1または、a+d=1、ad-bc=0と考えました。 そこで質問です。今、A^2=(a+d)A-(ad-bc)Eとして A^2=A ⇔(a+d)A-(ad-bc)E=A ⇔{1-(a+d)}A+(ad-bc)E=O そしてこれが成り立つような必要十分十分条件を考えました。 正方行列Aに対して sA+tE=O⇔s=t=0またはA=kE というものを利用すれば、a+d=1、ad-bc=0がs=t=0の部分に対応し、 a+dnot=1とすれば、A=kEと表せるので、もうひとつのA=kEに対応しますよね。 そして、この{1-(a+d)}A+(ad-bc)E=Oという行列式自体がA^2=Aが成り立つことを前提に考えているので、この式が成り立てば A^2=Aも成り立つはずです。よって必要十分条件としては{1-(a+d)}A+(ad-bc)E=Oが成り立つような必要十分条件の式であればよい→a+d=1、ad-bc=0またはa+dnot=1であればよいという考えが自分の考えです。 しかし、実際にはa+dnot=1のままではA^2=Aという条件を満たしません。 自分のどこの考えどういう点で間違っているんでしょうか??

  • 行列の証明問題です。

    n次正方行列Aが任意の正則行列Pに対して P^-1APとすると、 (1 1)成分が1 (n 1)成分が0(n≧1) であるn次正方行列になるならば A=Eである。 証明の方針を教えてくれませんか?

  • 行列の等式と成分(HC定理利用)

    A=(a b c d)とする。A^2=Aとなるとき、a,b,c,dの満たすべき必要十分条件を求めよ。 行列Aについて、ハルミトン・ケーリーの定理から A^2-(a+d)A+(ad-bc)E=O すなわち、A^2=(a+d)A-(ad-bc)Eが成り立つ。 A^2=Aとなるとき (a+d)A-(ad-bc)E=A ゆえに{1-(a+d)}A+(ad-bc)E=O [1]a+d=1のとき (ad-bc)E=O よってad-bc=0 [2]a+dnot=1のときA=(ad-bc/a+d-1)E ゆえに,(ad-bc/1a+d-1)=とおくと A=kE これをA^2=Aに代入して整理すると k(k-1)E=O よってk(k-1)=0 ゆえにk=0,1 よってA=OまたはA=E A=Oのとき a=b=c=d=0 このとき,a+d=0となり,a+dnot=1を満たす。 A=Eのとき a=d=1,b=c=0 このとき,a+d=2となり,a+dnot=1を満たす。 [1],[2]から a+d=1,ad-bc=0;またはa=b=c=d=0;またはa=d=1,b=c=0 教えてほしいところ まず、僕の考え方を述べます。 A^2=Aのa,b,c,dの満たすべき必要十分条件を考えたい。 A^2=(a+d)A-(ad-bc)Eより、 A^2=A ⇔(a+d)A-(ad-bc)E=A ⇔{1-(a+d)}A+(ad-bc)E=O よって、{1-(a+d)}A+(ad-bc)E=Oの満たすべきa,b,c,dの必要十分条件をもとめればよい。 k、s、tを実数、Eを単位行列とする。 正方行列Aに対して sA+tE=O⇔s=t=0またはA=kEより、 s=t=0,またはA=kEとなるような、a,b,c,dの必要十分条件をもとめればよい。 よって[1]a+d=1のとき (ad-bc)E=O よってad-bc=0 [2]a+dnot=1のときA=(ad-bc/a+d-1)E ゆえに,(ad-bc/1a+d-1)=とおくと A=kE よって、a+dnot=1または、a+d=1、ad-bc=0と考えました。 そこで質問です。a+dnot=1のとき、 A=kEとあらわせるのでそれ以上a,b,c,dの関係式は必要ないんじゃないんですか???

  • 高校数学の行列です

    A=(a,b,c,d)(行列で順に左上、右上、左下、右下の順)(a,b,c,d∈R),A≠kE(k∈R),A≠Oとする (1)Aの固有値λと固有ベクトル↑xが存在する条件はλが固有方程式λ^2-(a+d)λ+ad-bc=0(1)の解であることを証明せよ (2)(1)が異なる実数の固有値(λ=)α、βをもつとき、それらに対する固有ベクトル (↑x=)↑x1,↑x2は1次独立であることを証明せよ (3)特にb=cのとき、(2)において↑x1⊥↑x2であることを証明せよ (1)はA↑x=λ↑x,↑x≠↑0(⇔A↑x//↑x(広義平行),↑x≠0) ⇔(A-λE)↑x=↑0,↑x≠↑0 ⇔(a-λ,b,c,d-λ)(x,y)=(0,0),(x,y)≠(0,0) ⇔det(A-λE)=(a-λ)(d-λ)-bc=0 ⇔λ^2-(a+d)λ+ad-bc=0 となっていたのですが ⇔(a-λ,b,c,d-λ)(x,y)=(0,0),(x,y)≠(0,0)ここまでは分かりましたが、 この次の⇔det(A-λE)=(a-λ)(d-λ)-bc=0これは何で言えるんですか? (x,y)は0では無いですが、行列って互いに0でなくても掛けたら0になることはありますよね、それに0になったとしてもdetも0になるんですか? (2),(3)は解説を読むと分かって参考のようにして ケーリーハミルトンの定理 A^2-(α+β)A+αβE=Oが成り立つから↑0でない任意の平面ベクトル↑xに対して A(A↑x-β↑x)=α(A↑x-β↑x) A(A↑x-α↑x)=β(A↑x-α↑x) よって(A↑x-β↑x)//↑x1,A(A↑x-α↑x)//↑x2とあったのですが (A↑x-β↑x)//↑x1,A(A↑x-α↑x)//↑x2が何故成り立つのか分かりません その後すなわち行列(A-βE),(A-αE)によって任意のベクトル↑xはそれぞれα、 βの固有ベクトル↑x1,↑x2にへ行くなベクトルに変換されるとあったのですが、これも何の事か良くわからないのですが、詳しい説明をよろしくお願いします (注)として行列Aが固有値α、β(α≠β)と固有ベクトル↑x1,↑x2をもつ場合、平面上の任意のベクトル↑xを↑x1,↑x2に平行なそれぞれのベクトル↑p,↑qに直和分解して↑x=↑p+↑qとする  このとき、行列P=1/(α-β)×(A-βE),Q=1/(β-α)×(A-αE)はそれぞれ↑xを↑x1,↑x2上へ平行射影する1次変換である  すなわち P↑x=↑p,Q↑x=↑q 特に行列Aが対称行列のときP,Qは正射影の行列になるとあるのですが ↑qに直和分解して↑x=↑p+↑qとする までは分かりますが、この後の説明 がさっぱりわかりません、詳しくお願いします