• ベストアンサー

x*(x+1) = n(n+1)の解

x*(x+1) = n(n+1)の解 x=nもしくはx=-(n+1)が解となるそうですが、実際にはどう解くのでしょうか? 自分で考えたのは両辺の因子の対応付けをして 1) x=n, x+1=n+1 2) x=-n, x+1=-(n+1) 3) x=n+1, x+1=n 4) x=-(n+1), x+1=-n の4通りを考え、左と右の式が成り立つのは1.と4.の場合だけ、というのですが、 あまりすっきりとした解き方ではありません。 2次方程式の解の公式も使おうとしましたが、虚数が出てしまいうまく導出できませんでした。 もっと簡単な解き方についてご教授よろしくお願いいたします。

質問者が選んだベストアンサー

  • ベストアンサー
  • kabaokaba
  • ベストアンサー率51% (724/1416)
回答No.1

因数分解するだけでしょう x(x+1)=n(n+1) x^2+x-n(n+1)=0 x^2+((-n)+(n+1))x+(-n)(n+1)=0 (x+(-n))(x+(n+1))=0 x=n, -(n+1) 解の公式にいれたって 虚数なんかはでてきません. D=1+4n(n+1)=4n^2+4n+1=(2n+1)^2 です.

flex1101
質問者

お礼

ありがとうございます。 解の公式を間違ってました。情けなや。。。です。

その他の回答 (3)

  • drmuraberg
  • ベストアンサー率71% (847/1183)
回答No.4

式が対称なので更にいたずらを X=x+1/2 N=n+1/2 とおき、上式に代入し整理すると X^2-1/4=N^2-1/4 よって  X=±N ここでxとnに戻してやると x=n または x=-(n+1)

flex1101
質問者

お礼

綺麗な解法ですね。 ありがとうございました。

  • alice_44
  • ベストアンサー率44% (2109/4759)
回答No.3

1)~4) の 4 通りを書いてしまうと、あまりすっきりしなくなる。 自分で解を見つけるときには、1)~4) ぐらいの範囲に解があるだろうと 見当をつけてやってみれば、1) と 4) が見つかる。 それは、それでよいのだが、あくまで余白での計算。答案としては… [たまたま思いついて] x = n, x = -(n+1) を代入してみると、 この2つが解であることが確認できる。 二次方程式の解は、たかだか2つであることが知れているから、 この2つで全てである。[どうやって解を思いついたかはナイショ。] という説明がよい。もちろん、[ ] の部分は書かないほうがよい。 もっとも、因数分解してしまえば、説明の必要もないが…

flex1101
質問者

お礼

ありがとうございます。 独学をしておりまして、良い答案を書きたいのでなく、自分がすっきりと分かる解法が得られればと思い質問させていただきました。

  • f272
  • ベストアンサー率46% (8008/17113)
回答No.2

> 2次方程式の解の公式も使おうとしましたが、虚数が出てしまいうまく導出できませんでした。 それは計算を間違っているからです。 xに関する2次方程式だから解は2つと分かっているので、「両辺の因子の対応付けをして...」で十分にすっきりしてると思う。

flex1101
質問者

お礼

ありがとうございます。

関連するQ&A

  • 2次方程式の解、α^n+β^n

    α^n+β^nを、α+βとαβだけで表せず、困りました。 問題は、 2次方程式 x^2+x+1=0の2つの解をα,βとする。次の問にこたえよ。だたしnは整数とする。 (1) nが3の倍数のとき、α^n+β^nの値を求めよ。 (2) nが3の倍数のでないとき、α^n+β^nの値を求めよ。  というものです。 α+β=-1,αβ=1までわかったのですが、 α^n+β^n=(α+β){α^(n-1)-α^(n-2)*β・・・+β^(n-1)}を使った解き方や、 α^2+α+1=0,β^2+β+1=0を使う解き方を、考えようとしたのですが、うまくいきません。 高次方程式や、複素数と方程式の範囲で、解き方を教えてもらえるとありがたいです。どなたかお返事お願いします。

  • フェラーリの方法・四次方程式の解の公式について

    今現在解きたい四次方程式があるのですが、係数に虚数が含まれており、苦戦しております。 簡単に記すと以下のように表せます。 x^4+a*i*x^3+b*x^2+c*i*x+d=0 (見づらくてすいません) つまり第二項と第四項に虚数が含まれている状態です。 係数に虚数がある場合解の公式が使用可能でしょうか? またできない場合は他の四次方程式の解の導出方法を教えていただきたいです

  • X^n=1の解について

    X^n=1 (Xのn乗根)の解は、 X=cos(2πt/n)+isin(2πt/n)=e^(iθ) (ただし、θ=2πt/n, 0≦t<n, tは整数。) の他に表示方法(というか、解法?)はありましたか? 追伸: 確か、 X^n=1 ⇔ X^n-1=0 ⇔ (X-1)(X^(n-1)+X^(n-2)+X^(n-3)+...+X^3+X^2+X^1+X^0)=0 という解法もありましたよね。 ココからは、解きにくいですが。

  • 3次方程式x^3+x^2-2x-1=0の解

    3次方程式x^3+x^2-2x-1=0の解をαとします。もちろんカルダノの公式なり何なりでαを具体的に記述することは出来ると思います。さて、 α^2-2 を方程式に代入すると、αが解であることから、α^2-2も解になることが容易に分かります。つまり解が一個見つかれば、それを2乗して2を引けばそれもまた解であることが分かるので、重複しないことさえ確認しておけば、3つの解は α,α^2-2,(α^2-2)^2-2 と出来ることになります。こういう問題の誘導がついていれば、もちろんその通りだと思うのですが、α^2-2が元の方程式の解であるということはどうやって分かるのでしょうか? たとえばx^3-1=0という3次方程式であれば、ひとつの解αに対して、α^2も解になることが分かります。3次方程式のひとつの解をαとおくと、もうひとつの解がαの2次式で書けるという一般的な原理でもあるのでしょうか?

  • 1/2次方程式の解の個数について

    高校2年生です。 『n次方程式の解の個数はn個』という定理(定義?)を習いました。 これって、nが自然数以外のときにも応用できますか? たとえば、 √x=2 という方程式は x=4の1個を解に持つと思うのですが(虚数も考えましたが存在しませんよね?) 書き換えると、 x^1/2(xの2分の1乗)=2 となりますね? この定理からいくと、 n=1/2のときは、解を1/2個持つということになってしまいます。 nは自然数のみなどという但し書きのようなものが存在するのでしょうか。

  • 二次方程式x2(エックス自乗)+3x=0の解を教えてください。

    二次方程式x2(エックス自乗)+3x=0の解を教えてください。 両辺に因数分解できるように何か値を足せばよいのでしょうか・・・

  • x^n-1=0の解の2乗

    mを使った指数の表現がわからないので質問します。問題は、 n次方程式x^n-1=0のn個の解 cos((2kπ)/n)+isin((2kπ)/n) (k=0,1,2・・・,n-1)のそれぞれの2乗のうち相異なるもののすべてを解とする最低次の方程式をつくれ。 というものです。 ω=cos((2π)/n)+isin((2π)/n)とおくと、 x^n-1=0のn個の解の集合は、A={1,ω,ω^2,ω^3,・・・,ω^(n-1)}である。 1)n=2m-1(m∈N)のとき、A={1,ω,ω^2,ω^3,・・・,ω^(2m-2)} この各元の2乗の集合は、B={1,ω^2,ω^4,・・・ ,ω^(2m-2),ω^2m,ω^(2m+2),・・・,ω^(4m-4)}である。ここでωはx^(2m-1)-1=0の解であるから、ω^(2m-1)=1。ω^(2m+2k)=ω^(2m-1)*ω^(2k+1)=ω^(2k+1) (k=0,1,2・・・,m-2)。よってA=B ゆえに求める方程式x^n-1=0 自分は、Bの元のω^2m以上のωの偶数乗は、Aの元のωの奇数乗であることは、ω^(2m+2k)=ω^(2m-1)*ω^(2k+1)よりわかったのですが、Bの元のω^(2m-2)以下の元 ,ω^(2m-4)などに対応するAの元があるかがはっきりしません。Aの値によっては、2m-4は負の数になる等疑問がいくつか出てきました。Aのωの指数は,0から2m-2まで1つずつ増えて行くので、ω^(2m-4)はAの元に含まれるとは感覚的にはわかります。しかし、m=2,3の場合を文字で指数を表現するとわかりづらいのです。例えばm=2,n=3のとき A={1,ω,ω^2}={1,ω^(2m-3),ω^(2m-2)} とすると、B={1,ω^(4m-6),ω^(4m-4)}となり、4m-6は2m-2以下か?とかAのωの偶数乗とひとしいか分かりづらかったです。また、2m-k=mを満たすkはmより、A={1,ω^(m-1),ω^(2m-2)} (2m-kで2m-2はm=k=2となるので、)これはB={1,ω^(2m-2),ω^(4m-4)}となり、さらに、m=3,n=5のとき A={1,ω,ω^2,ω^3,ω^4}={1,ω^(m-2),ω^(m-1),ω^(2m-3),ω^(2m-2)}としても、B={1,ω^(2m-4),ω^(2m-2),ω^(4m-6),ω^(4m-4)}とぱっと見ではAのωの偶数乗とひとしいか分かりづらいです。どなたか、Bの元のω^(2m-2)以下の元はAのωの偶数乗の元と等しいとわかりやすくする、ωの指数の表現があれば教えてください。またBの元のどのωの累乗から、2m+2kでどこから4m-2lのかその分け方も教えてください。お願いします。 本の解説はつづいて、2)n=2m(m∈N)のときを考え、答えは、nが奇数のときx^n-1=0 nが偶数のときx^(n/2)-1=0でした。

  • 実数解と虚数解

    二次方程式x^2+(p-1+2i)x-19p+50-2pi=0が1個の実数解と1個の虚数解を持つような実数pを求めよ 解き方がわかりません 教えてください

  • α、βを解とするひとつの二次方程式は解るが他には?

    二つの数α、βを解とする二次方程式のひとつは(x-α)(x-β)=0であるということで 具体的な数字で考えると3と5を解とする方程式のひとつは(x-3)(x-5)=0つまり x^2-8x+15=0となりますが他にはどんな式になるのでしょうか。たとえば両辺に2をかけて 2x^2-16x+30=0とかでしょうか?あるいは両辺に分数をかけたりしてもいいのでしょうか? ひょっとするとまったく考え方が違うのでしょうか。 自分でも方程式の基本的な意味がわかっていないので理解できないと思っていますがよろしく お願いします。

  • x^(n+1)-1=0 の解を1,a1,a2,・・

    以下の問題の解答に質問があります。 問) x^(n+1)-1=0 の解を1,a1,a2,・・・,an とすると (1-a1)(1-a2)・・・(1-an) の値を求めよ。 ただし、n≧1とする。 解) f(x)=(x-a1)(x-a2)・・・(x-an) とおく。 x^(n+1)-1=(x-1)(x^n+x^(n-1)+・・・+1) の解が 1,a1,a2,・・・,an なので f(x)=x^n+x^(n-1)+・・・+1 …☆ よって f(1)=n+1 ☆の式がよく分かりません。 なぜ、解が 1,a1,a2,・・・,an だったら ☆の式になるのですか。 よろしくお願いします。