• ベストアンサー

確率問題 二項定理

確率問題 二項定理 予備校で二項定理を使えば、例えば4人でジャンケンする場合のそれぞれの組あわせの確率は (1/3+1/3+1/3)の2乗ですべて求めらあれるということを習いました でもいざ他の問題を解こうとすると、2項定理が使えないように思われるものもありました。 二項定理を使えるものと使えないものがあるのでしょうか? あるのなら、その見分けをご説明願います。

質問者が選んだベストアンサー

  • ベストアンサー
noname#116057
noname#116057
回答No.1

二項定理が必要なもの……二項分布

全文を見る
すると、全ての回答が全文表示されます。

その他の回答 (1)

  • Ishiwara
  • ベストアンサー率24% (462/1914)
回答No.2

2項定理が適用できる問題は ((事象Aが起きる確率)+(事象Aが起きない確率))^試行回数 の展開によって各場合の確率が求められる場合に限ります。 ((事象Aが起きる確率)+(事象Bが起きる確率)+‥)^試行回数 のように3項以上となる場合は「2項ではありませんから」使えません。 4人のジャンケンには、一般に使えません。ただし「2回以内で勝負がつく場合」と「そうでない場合」のように、場合分けが「2とおり」に限られるのであれば、使えます。

全文を見る
すると、全ての回答が全文表示されます。

関連するQ&A

  • 二項定理の問題で・・・

    二項定理の問題なので、表記が見にくくなってしまい、すいません; nとか0とか2は、二乗とかの、全て小さいものとして表記してます; 等式(1+X)n乗 (X+1)n乗 =(1+X)2n乗 を用いて、次の等式を証明せよ。 nC0二乗+nC1二乗+・・・+nCn二乗=2nCn この問題で、 (1+X)n乗(X+1)n乗 =nC0(nC0・xn乗+nC1・Xn-1乗+・・・+nCn) +nC1X(nC0・Xn乗+nC1・Xn-1乗+・・・+nCn) +nCnXn乗(nC0・Xn乗+nC1・Xn-1乗+・・・+nCn) となるようなのですが、どうしてこんな式になるのかがさっぱりわかりません。 また、 (1+X)n乗(X+1)n乗の展開式においてxn乗の項の係数は nC0二乗+nC1二乗+・・・+nCn二乗 で、また、 (1+X)2n乗の展開式の一般項は2nCrXr乗 よってXn乗の項の係数は2nCn 両辺のXn乗の項の係数は等しいから、等式は成立する。 なぜ両辺のXn乗の項の係数を調べるのでしょうか? 本当にわかりません。アドバイスお願いします。

  • 二項定理について

    二項定理がどうしても分かりません。(a+b)のn乗において aの(n-r)乗・bのr乗の項はn個の因数(a-b)から aを(n-r)個、bをr個取ってそれらを掛け合わせて得られる項を全て加え合わせたものである。それらの項の数はnCn-r=nCrとありますが、項の数が何故nCn-rとなるのでしょう。 aの選び方の組み合わせという事でしょうか? だとしたらそのそれぞれの場合にbについてもr個の選び方があるはずです。 ということは(n-r)×r個の項の個数があるような気がします。 とにかく項の数の導き方が分かりません。どうかよろしくおねがいします。

  • 高一、二項定理、の問題です

    問題を解いていて、わからないところがあったので、教えていただけるとうれしいです。 二項定理を用いて、証明せよ。ただし、nは2以上の整数とする。 (1+1/n)n乗>2 二項定理をIとして、 Iより、a=1、b=1/n とすると、 (1+1/n)n乗=nC0+nC1・1/n+nC2・1/n二乗・・・+nCn・1/nn乗 nCr>0、1/n>0であるから、n≧2のとき、 nC2・1/n二乗+・・・+nCn・1/nn乗>0 よって、この式は成立する。 となるのですが、 「nCr>0、1/n>0であるから、n≧2のとき」 の部分の意味がよくわかりません。 どうしてここで出してくる必要があるのでしょうか。 また、n>2ではなくn≧2なのはなぜなのでしょうか?

  • 二項定理を使う問題がわからない・・・・

    典型的なパターン問題のようですが理解できません。よろしくお願いします。 (1)(x^2-2/x)^6の展開式のx^6の係数と定数項を求めよ。 二項定理より一般項は 6Cr・(-2)^r・x^12-2r/x^rとなるのはわかります。しかし、「x^6の係数は12-2r=6+rなので」r=2というのがわかりません。 定数項も「定数項は12-2r=rなので」r=4というのがわかりません。 なんとなく定数項の場合「分子と分母のxの次数をそろえて1にする」ようなニュアンスはありますが、x^6のことを考えるとまったくわからなくなります。 (2)(1-a^2+2/a)^3の展開式の定数項を求めよ。 似たような問題です。。。これも二項定理の拡張の定理(名前はいい加減)より、一般項は{(-1)^q・3!・2^r/p!・q!・r!}・a^2q-rというところまでは公式に当てはめるだけなので、わかります。これは条件より、(p,q,r)=(3,0,0),(0,1,2)ともとまります。ここも大丈夫ですが、この後定数項は(一般項に(3,0,0)を代入したもの)+(一般項に(0,1,2)を代入したもの)=-11となっています。何でこれらを足しているのでしょうか。(p,q,r)=(3,0,0),(0,1,2)なので定数項が2通り出てくるのではないかと思います。もちろんそんなことありえないのはわかっていますが、なぜ足すのでしょうか。 長文すみません。どうか、よろしくお願いいたします。

  • 行列の二項定理を使った問題です。

    数Cの問題です。 わからなかったので、誰か教えてください。 二項定理の応用です。 (1)二次の正方行列Aが実数αに対し(A-αE)の二乗=0(零行列)を満たすとき、 任意の自然数nに対して Aのn+1乗=(n+1)αのn乗A-nαのn+1乗E が成り立つことを示せ。 ただし、Eは単位行列、0は零行列である。 (2)A=( 3 2 -2 -1)←二次の正方行列 のとき自然数nに対してAのn乗を求めよ。 ( 3 2 ) ↑ (-2 -1 ) 協力よろしくお願いします。

  • 二項定理について詳しい方お願いします。

    (1)(x-【x二乗分の5】←分数です)の6乗を 展開した時のxを含まない項を求めよ。 答えは375です。 (2)(x二乗-3x+1)十乗の展開式における x三乗の係数を求めよ。 答えは-3510です。 それから、二項定理ではないのですが、 (3)サイコロを3回振り、出た目を順に左から書いて 3桁の整数を作る。この時、一の位、十の位 、百の位が全て異なる整数の和は□である。 答えは46620です。 答えは分かるのですが、途中の考え方を書いて 提出しなければいけないので、もし考え方が 分かる人いたらお願いします。

  • 二項定理関係の証明問題です。

    等式 nC0+nC1+nC2+......+nCr+......+nCn=2のn乗 を証明せよ。 二項定理の問題では、Cの右側の数字が小さいですが、パソコンでのやり方が分からないので、大きいままです。すみません。 よろしくお願いします。

  • 二項分布、二項定理の「二項」って何?

    超文系人間です。 文系人間向けの統計処理の解説本に「二項分布はなぜ二項分布というかというと、二項定理を展開したときの形だからです」と書いてありましたが、これだと理系の人向けの説明で、文系向けの説明にはなっていません。数学の「項」という場合、どのような概念なのでしょうか? どなたか、教えてくれる人いたら、教えてください。 よろしくお願いします・

  • 二項定理の展開式

    数Aの範囲の二項定理の展開式が恐ろしいほどに理解できません。         問題が、(2xの二乗+3)六乗の展開式におけるxの六乗の項の係数を求めよ    という問題なのですが、参考書には                                     6-r  r     6-r  r  12-2r                           6Cr(2χ二乗)   3 =6Cr・2  ・3 χ  となっているのですが、                6-r  r                            6Cr(2χ二乗)   3 までは展開式の一般項に当てると、わかるのですが、そのあとの      6-r  r 12-2r =6Cr・2  ・3 χ      が何故こうなるのかわかりません。                   あと、同様に(χ+χ分の2)四乗の展開式におけるχ二乗の項の係数を求めよ という問題がわまりません。 お手数だとは存じますが、どなたか、よろしくお願いいたします。 分かり難かったら申し訳ございません。 参考書というのは黄チャートのP227の基本例題31のものです。

  • 確率の問題を教えて下さい。

    確率の問題を教えて下さい。 [問]3人がじゃんけんで1.2.3番を決める。ちょうどn回目で3人の順位が確定する確率P(n)を求めよ。   ただし、3人ともグー、チョキ、パーを出す確率はすべて1/3とする。  最初、3人でじゃんけんをするときは、あいこ、一人が勝、一人が負けの確立が各々1/3  のこりの2人でじゃんけんをする場合、あいこの確率が1/3、勝敗がきまる場合が2/3となると思います。  ここで詰まっています。よろしくお願いいたします。