• ベストアンサー

変数変換

変数変換 添付画像の式変形がよくわかりません。 t=b tan?theta の微分は dt/d?theta = b / (cos?theta)^2 まではわかりますが、分母のcosの2乗とsinの2乗をどのようにして (a^2 + t^2)(b^2 + t^2)に 変形できるのかわかりません。 よろしくお願いいたします。

質問者が選んだベストアンサー

  • ベストアンサー
  • OKXavier
  • ベストアンサー率53% (135/254)
回答No.1

ヒントです。 t=btanθ ‥‥(1) bsinθ=tcosθ b^2(sinθ)^2=t^2(cosθ)^2 ‥‥(2) dt=b(secθ)^2・dθ dθ=(1/b)(cosθ)^2・dt ‥‥(3)  b^2+t^2=(b^2)(1+(tanθ)^2) √(b^2+t^2)=b/cosθ ‥‥(4) (1)~(4)まで使えば変形できます。あとはご自分でどうぞ

flex1101
質問者

お礼

解けました! ありがとうございました。 (2)と(4)がみそですね。自分では思いつきませんでした。

関連するQ&A

  • 媒介変数表示の二階微分

    媒介変数表示 x=cos~3t,y=sin~3t があります.これを微分する場合, dx/dt=3(-sin t)cos~2t dy/dt=3cos t sin~2t となり,dy/dt=-tan t となるようですが,これを二階微分するには,どうしたらよいのでしょうか. そのまま d~2y/dx~2とやってもtだけなので結果は0ということはもちろんあり得ないので,tを何らかの形でxを含ませるか,媒介変数表示の場合は別の方法があるのか分かりません. このような場合にはどうやって微分すればよいのでしょうか?ご教授願います.

  • 三角関数を時間微分すると・・・

    まず、(a,bは定数)x=acosθ+bcosψを時間(t)で微分します。 するとdx/dt=-a(dθ/dt)sinθ-b(dψ/dt)sinψ-(1)と なるのはなんとなく分かるのですが。 (1)式をさらに時間(t)で微分すると、 (d^2x/dt^2)=-a(d^2θ/dt^2)cosθ-b(d^2ψ/dt^2)sinψ-b(dψ/dt)^2cosψ-(2)になるのがまったく分かりません。 どうして(1)式をさらに時間微分するとψの項が2つ出現するのか がまず?です。 何度も先生に聞いたりしましたが、よく分かりませんでした。 どなたか、解き方を教えて下さい。 よろしくお願いします。

  • 積分の計算

    ∫1/√(x^2+1)dxをもとめよ。 x=tanθとおくと、dx=dθ/cos^2θ 与式=∫(dθ/cosθ)=∫cosθ/(1-sin^2θ)dθ sinθ=tとおくと、cosθdθ=dtより、 与式=∫dt/(1-t^2) =1/2((1/1-t)+(1/1+t))dt =1/2(-logI1-tI+logI1+tI)+C(絶対値) =1/2log{(1+t)/(1-t)}+C =1/2log{(1+sinθ)/(1-sinθ)}+C =1/2log{(1+sinθ)^2/cos^2θ}+C =log(1+sinθ/cosθ)+C とやって、tanθ=xを使って復元できなくなりました。 助けてください

  • 変数変換の問題です

    テスト勉強の内容なのですが、次の変数変換が出来なくて困っています。 δx・δy・δzはどのように変換したらよいのでしょうか? 以下、問題になります。 x = rsinθcosφ y = rsinθsinφ z = rcosθ ∇^2 = (δ/δx)^2 + (δ/δy)^2 + (δ/δz)^2 でありますが、これを変数変換して ∇^2 = (1/r^2)(δ/δr)r^2(δ/δr) + (1/(r^2*sinθ))(δ/δθ)sinθ(δ/δθ)       + (1/(r^2*sin^2θ))(δ/δφ)^2 としたいのです。 わかりにくそうなところを補足しますと、δは偏微分の記号、sin^2θはサイン二乗θとなります。 どなたかお時間のある方、お教え願います。

  • 式変形で分からないところがあります(積分)

    [ 問題 ] ∫(0→1) dx/√(x^2+1) [ 解答 ] x=tanθ とおく。 (与式)=∫(0→π/4) cosθ/(1-sinθ) dθ …(※) t=sinθとおく。 (※)=∫(0→1/√2) dt/1-t^2 =∫(0→1/√2) dt/(1+t)(1-t) =1/2∫(0→1/√2) {1/(1+t)+1/(1-t)}dt←ここから =1/2[log|1+t|-log|1-t|](0→1/√2)←ここまで … (答)…log(√2+1) という式変形なのですが、 「ここから~ここまで」のところで なにがおこっているかが よくわかりません(;_;) なぜlogの間がマイナスになってるのに 1-tのままなのか… なんかそこがポイントらしくて 赤で書かれています… おねがいします…(;_;)!!

  • 積の微分法則につきまして

    積の微分法則につきまして質問があります. ご回答をお願いできましたら幸いです. a*Sinθ ※a=a(t),θ=θ(t) 以上の数式を,まずtで一階微分しますと積の微分法則を利用して d/dt(a*Sinθ)=da/dt*Sinθ+a*dθ/dt*Cosθ となるかと思います. 次に,さらにtで一階積分しますと,第一項目は d^2a/dt^2*Sinθ+da/dt*dθ/dt*Cosθ となると思うのですが,問題は第二項目の「a*dθ/dt*Cosθ」で, この様な式には,どのように積の微分法則を利用するのでしょうか? 恐らくは積の微分法則を細分化して使用,つまり (a*dθ/dt)’*(Cosθ)+(a*dθ/dt)*(Cosθ)’ =[{(a)’*dθ/dt}+{a*(dθ/dt)’}]*(Cosθ)+(a*dθ/dt)*(Cosθ)’ =略 のようになるかと思うのですが,この考え方で宜しいのでしょうか? さらに念のための確認ですが d/dt(da/dt)=d^2a/dt^2 は (da/dt)^2≠d^2a/dt^2 ですよね? 非常に幼稚な質問かとは思いますが,ご回答をお願いできましたら幸いです.

  • 定積分

    ∫[0~1]√(x^2+1)dxの値を求めよ。 次の解答を考えましたが、別の解答のほうがよいというのがあったら 教えてください。 x=tanθとおく。dx=1/(cosθ)^2dθ よって、与式=∫[0~π/4]1/cosθdθ        =∫[0~π/4]cosθ/(cosθ)^2dθ =∫[0~π/4]cosθ/{1-(sinθ)^2}dθ sinθ=tとおく。sinθdθ=dt より       =∫[0~1/√2]1/{1-t^2}dθ       ・・・・・ このように考えましたが、よろしくお願いします。

  • フーリエ変換

    フーリエ変換でよくある形の式 X(f)=∫x(t)e(-j2πft)dt x(t)=1(-d/2<t<d/2),0(それ以外) というものなのですがこの式は ∫x(t)cos2πft dt とかけますよね?この積分は sin2πft/2πftになるかと思っていたのですが そのまま計算すると答えが合わないんです。簡単なところを見逃している気がしますが ∫x(t)cos2πft dt の計算を省略せず解答お願いします。

  • 変数変換後の積分範囲

    変数変換後の積分範囲 解析演習という本を独学しているのですが、わからない点が出たので質問いたします。 integ_0^a ( 1/ sqrt(1 - x*x)) dxという式 (_0^aは0からaの範囲の積分という意味、 sqrtは根を求める意味です)において x=sin tとして変数変換すればいい、と本に 書かれてました。なお、ここで|a| < 1という条件がついています。 ここで気になったのが、積分の範囲です。dxからdtに変換されているのですが、 変換後の式は integ_0^a (1)dtと書かれており、0<=x<=aから 0<=t<=aという ように定義域が同じままでした。 dtの積分範囲はこれで正しいのでしょうか? 間違いの場合、0<=sin t<=aに対する tの範囲はどう求まるのでしょうか?

  • 再投稿: 極値と変形

    少々混乱していたので再投稿です。 テキストから以下、引用します ======================= P=(1/tanθ)・{(tanθ-tanφ')/(1+tanθtanφ')} である。Pが極値を持つときを調べる。 Pをθで微分する。 今、t=tanθ a=tanφ'と置く。 すると P=f(t)=(1/t)・{(t-a)/(1+ta)}=-a/t + (1+a^2)/(1+at) f'(t)=a/t^2 - a(1+a^2)/(1+at)^2 =0となるtは t=tanθ=√(1+a^2) + a = √(1+tanφ'^2) + tanφ' となる。 ================================ ★以下本題。 P = (1/tanθ)・sin(θ-φ)/cos(θ-φ-δ) についてt=sinθと置くと、Pの極値を与えるt=tAをtanφ'とtanδを用いて表すと以下のようになる tA = ( ) という問題です。 -------------------- 上記引用を見て T=tanθと置くと P=f(T)=(1/T)・(sinθcosφ-cosθsinφ)/{cosθcos(φ+δ)+sinθsin(φ+δ)} 分母・分子をcos(φ+δ)で割って P=f(T)=(1/T)・(aT-b)/(1+cT) a,b,cはそれぞれ定数 としましたが、ここからどうしていいか分かりません